串并联谐振高压脉冲电容充电电源的闭环控制

最新更新时间:2012-08-09来源: 高压脉冲电容 串并联谐振 闭环控制关键字:串并联  谐振  高压脉冲  闭环控制 手机看文章 扫描二维码
随时随地手机看文章
1 引言
    高压脉冲电容能在很短时间内迅速释放其储存的能量,形成强大的冲击电流和冲击功率,因此广泛应用在激光核聚变、X光机、粒子束武器等领域。脉冲电容器的能量存储主要靠高压直流充电电源来实现。
    文献利用LC串联谐振电路研制了一台40 kW/10 kV数字化高频高压脉冲电容充电电源,重点对提高功率密度和安全性能方面进行了研究,但未考虑分布电容。文献基于移相闭环控制LCC串并联谐振设计了电火花加工电源,克服了传统电火花电源体积、重量大,效率低的问题,但谐振电流连续,开关损坏较大,未考虑功率输出。
    这里通过分析,研制了LC串联谐振变换器的实际电路,针对限功率条件下充电电流减小,利用率低,充电速度慢等问题,采用闭环控制策略对等效LCC串并联谐振电路进行控制,提高了充电速度和电源利用率,效果良好。

2 3 kWLC串联谐振电容充电电源
    交流输入整流后直流侧电压为200 V,电源输出电压7 kV,功率3 kW。由LC串联谐振特性,根据恒流、峰值限定和输出功率,计算选择电路参数为:开关周期Ts=100μs,谐振电容C1=1μF,谐振电感L=60μH,谐振周期,Ts>2T1,满足软开关条件。
2.1 谐振充电电源系统框图
    图1示出充电电源系统框图,系统分为主电路和检测控制电路。主电路220 V/50 Hz交流电压经过EMI滤波、全桥不控整流和LC滤波后得
到直流母线电压(AC/DC),母线电压经过全桥逆变和谐振网络变为高频交流信号(DC/AC),通过高频变压器升压和高压硅堆整流成高压直流(AC/DC)对高压脉冲电容负载充电。


    控制系统核心为TMS320F2812型DSP,实现与上位机串行通信、系统上电/断电控制、充电电压采集以及PWM驱动信号产生等功能。
2.2 充电电源主电路的实现
    按照串联谐振电源输出功率3 kW,输入功率至少为:Pin=Po/η=3.5 kW。根据此输入功率可计算输入整流桥和LC滤波电路部分参数,整流桥选择KBPC3006,30 A,600 V;滤波电容1 640μF,900 V;滤波电感20 mH,16A。
    逆变选用两个75 A/600 V SKM75GB063D型IGBT,该谐振电路实现软开关,开通和关断损耗均较低,因此IGBT缓冲电路参数可选择较小容量,RCD缓冲电路中缓冲电容选用聚丙烯薄膜低感电容,缓冲电阻选用低感或无感金属碳膜电阻,二极管为快恢复二极管。
    主电路中核心器件为高频高压变压器,其漏感和分布电容参与软开关谐振的工作过程,对电路有很大影响。需合理选择变压器匝数、变比、磁通密度以及绕组工艺。变压器工作频率约为20 kHz,为减小体积重量,铁心选择超微晶合金C型铁心,变压器功率3 kW,高压侧电压7 kV,变比1:35。
    高频变压器初级漏感外串电感作为谐振电感,共60μH,串联谐振电容选用高频无感金属化薄膜电容1μF/630 V。
2.3 充电电源控制电路的实现
    控制系统核心DSP选用TMS320F2812,32位定点DSP,该款芯片在C2000系列DSP中性能、资源、成本等方面综合占优势。
    用TMS320F2812事件管理器(EV)产生PWM信号,可编程软件控制死区。PWM信号有4路,两路为一对,信号相同,因DSP输出驱动能力不足,利用逻辑门极比较器等外部电路增强驱动能力。
    系统需检测高压脉冲电容负载的充电电压,用精密电阻分压器分压采集,信号需与控制电路隔离,采用线性光耦和精密运放组成信号隔离和调理电路,处理完的模拟信号送入A/D,光耦前后电路需要隔离电源。
    系统负载为高压脉冲电容,充电电压的斜率与充电电流成比例,可根据I=C△u/△t计算某一时间段的平均充电电流。

3 串联谐振实验效果及特性分析
    3kWLC串联谐振脉冲电容充电电源完成后调试正常,恒频条件下对600μF,15 kV高压脉冲电容进行7 kV充电实验,通过示波器得到图2所示恒频时谐振电流iL包络和充电电压Uo波形。


    由图2可见,充电到7 kV充电时间为22 s。由iL包络看出其峰值为35 A,峰值先稍微增大,到充电后期逐渐减小到零。
    对于电容性负载,,若电流恒定,则Uo上升速率不变,故Uo波形斜率可反映充电电流变化。图2中Uo波形斜率说明充电电流开始较大,0~4 kV阶段,电压变化率较小,充电电流变化较少,而在4~7 kV阶段,电流随着电压升高迅速减小,说明实际电路不是恒流充电的LC串联谐振电路,电路中高频变压器和整流硅堆存在分布电容,导致串联谐振电路变为LCC串并联谐振。
    系统实际等效电路如图3所示,其中,并联谐振电容C2等效为变压器和整流硅堆分布电容,L为谐振电感,C1为串联谐振电容。


    串并联谐振电路中,负载电容Co通过整流桥及变压器与C2并联,当C2两端电压使整流硅堆导通时,Co连接到电路中,电路为L和C1串联谐
振,谐振周期为T1。当C2两端电压小于等效负载电容电压,整流硅堆不能导通时,Co与电路断开,此时电路为L,C1和C2谐振,谐振周期为T2。随着Co电压的升高,Co连接到电路的时间减少,谐振周期逐渐减小,而LC串联谐振周期不变。图4示出2 kV,4 kV时iL与Uo波形,对比图4a,b得,随着Uo的升高,谐振周期变短,符合串并联谐振特点,证明实际电路为串并联谐振。


    恒频时充电电流逐渐减小,输出功率呈波峰状,输出功率最大为1.5 kW,远小于设计的3 kW。在充电开始后一段时间即达到最大值,然后输出功率逐渐减小。
    根据上述分析得出该电路存在的问题:①实际电路为LCC串并联谐振,随着Uo升高,充电电流减小,越到后期充电速度越慢;②由于充电电流减小,造成输出功率降低,达不到设计目标。
    针对以上问题,采用充电电流闭环控制策略可使充电电流维持恒定,实现理想LC谐振恒流充电。但从输出功率角度分析,电流闭环恒流充电输出功率曲线与电压相同,充电末期输出功率最大,在限制输入电源功率的场合,仅能按照最大功率值设计电源,而该电源只有在最后阶段才达到最大功率输出,电源利用率低,电源体积重量也较大。单纯的电流闭环并不是最佳的控制策略。根据实际LCC串并联谐振功率输出波峰状曲线,考虑使LCC达到较大功率后实现恒功率输出(例如按1.2kW),不仅可以相对恒频控制提高充电速度,还能减小电源的功率等级,从而减小体积重量,适合限功率、小型化场合。

4 闭环控制策略及软件实现
    根据上述分析,在实际LCC串并联谐振电路中加入闭环控制策略,控制思想为:①充电开始阶段,采用电流闭环,使充电电流不变,为恒流控制;②根据功率变化曲线加入功率闭环,在电源充电达到设定功率后改变充电电流,维持该功率输出恒定,直到临近设定充电电压(95%),此阶段为恒功率控制:③在充电电源临近设定充电电压时(95%),为提高充电精度,采取降低开关频率,小电流充电,甚至可在达到充电电压时,根据系统泄漏电流保持电容电压恒定。
    系统实现闭环控制时,需要反馈量,此系统需要充电电流、输出功率和Uo。为简化,系统仅采集检测Uo,充电电流值根据Uo变化率计算得到,输出功率通过Uo和充电电流相乘得到。
    控制系统中,PI控制器因其控制简单迅速,能克服余差,有良好的控制效果得到广泛应用。图5为PI闭环控制软件流程图。


    将模拟PI控制变成采用DSP实现的数字PI后,控制性能更加灵活。数字PI控制器模型为:
    
    系统中因电流和功率控制要求不高,为防止频繁动作,电流闭环和功率闭环都采用带死区的PI调节器,在误差超出死区范围时才进行调节控制。
    软件实现时,充电启动命令,先对DSP的EV赋初值输出PWM开始充电,定时器0定时中断后,采集电容两端电压值U1,等待定时器0下一个定时中断,采集电容两端电压值U2,根据U1,U2,电容容量Co以及定时器0定时中断时间T计算充电电流和功率:
    Io=Co△u/△t=Co(U2-U1)/T,P=UIo=(U1+U2)Io/2       (3)
    计算出充电电流和功率后,判断如果未达到设定功率(1.2 kW),采用电流PI控制算法,改变逆变部分开关频率和占空比,维持充电电流恒定;如果达到设定功率后,采用功率PI算法,改变逆变部分开关频率和占空比,使输出功率恒定。在未达到设定电压95%前,不断地循环采集计算,执行PI控制,到Uo达到设定电压95%,EV PWM赋初值,小电流充电,达到设定的Uo,PWM停止输出,完成充电。
    电容充电完成后,若没有立即释放,由于电容或放电回路存在泄漏电流,导致电容两端电压逐渐减小,如果要求电压精度较高,还可在充电末期加入小电流恒压,保持闭环控制。

5 闭环实验结果及分析
    完成软件编写调试之后,利用600μF,15 kV高压脉冲电容进行闭环控制充电的实验,设定Uo=7 kV,功率1.2 kW。图6a示出闭环后iL包络和Uo波形。对比图6a与图2可知,恒频时7 kV充电时间22 s,闭环后充电时间为17 s,充电速度明显变快。图6a中Uo波形前一阶段斜率基本不变,为恒流充电。


    根据实验数据记录得图6b所示闭环后Uo、充电电流Io和输出功率Po曲线,Po最大1.2 kW,在达到1.2 kW前Io基本恒定,充电到接近7 kV时Io改为小电流,Po下降。实验效果理想。
    采用闭环控制后,可实现1.2 kW恒功率输出,原设计的3 kW电源系统主电路参数均可减小,从而减小变压器、滤波元件、开关管等体积和重量,在设计其他电源时可减小电路功率等级,对电源的小型化和减轻重量有重要意义。
    需注意的是,闭环控制调节开关频率时,开关频率有一个限制范围,需保证满足IGBT的软开关。通过观察恒频控制时各个充电阶段的谐振周期,判断出谐振周期的变化范围,根据此变化范围来确定开关周期的变化范围,使开关周期大于2倍谐振周期,实现软开关。
    通过实验发现,恒频控制时充电后期谐振周期缩小到35μs,谐振正半周时间变化较小(分布电容较小),故末期开关周期必须大于70μs,导通时间大于25μs,取开关周期最小为72 μs,导通时间最小为26μs(导通时间不变),在PI控制过程中需要满足此限制,故系统需要既调节开关频率,又调节占空比。开关周期的最大限制可在满足应用的条件下选择合适的值。
    图6c示出采用闭环控制后充电到6 kV时的iL和Uo,由图中iL波形可见充电到6 kV时,谐振电流仍为断续,谐振正半周大概25μs,满足软开关。

6 结论
    实际的LC串联谐振电容充电电源都是LCC串并联谐振,采用闭环控制策略可改善LCC串并联谐振电路的性能,提高充电速度及电源利用率,降低电源功率等级,减小电源的体积和重量,适合限制功率,要求小型化的场合。

关键字:串并联  谐振  高压脉冲  闭环控制 编辑:探路者 引用地址:串并联谐振高压脉冲电容充电电源的闭环控制

上一篇:全数字化特种电源实时并机系统研究
下一篇:基于TLV2374的弧线电机电流采样系统

推荐阅读最新更新时间:2023-10-17 15:01

风光高压变频器的电快速脉冲群干扰特点及抑制方法
摘要:本文通过理论和实验的方法,详细分析了电快速脉冲群干扰的特点及其抑制方法,以及风光高压变频器在此方面所做的努力和提升。 1引言 EFT是电快速瞬变脉冲群抗扰度试验的简称。EFT试验的目的是验证由闪电、接地故障、电源开关动作、或电路中继电器等电感性负载动作而引起的瞬时扰动对整个控制回路中产生干扰时,控制箱(和PLC等器件)的抗干扰能力。这类干扰的特点是:脉冲成群出现、脉冲的重复频率较高、脉冲波形的上升时间短暂、单个脉冲的能量较低。所以有可能会因为某路电路中,机械开关对电感性负载的切换,对同一电路的其它电气和电子设备产生干扰,所以必须对本公司高压变频器做EFT试验。 2 EFT波形特点 测
[电源管理]
闭环控制的充电器电路原理图
双闭环控制的充电器电路原理图 该充电器是专为电动自行车电池设计的, 它将交流电整流并用IGBT调压达到电池所需要的充电电压3 6 V 左右,通过电压、电流双闭环控制,达到“三段式” 充电的目的。充电器主要由主回路和控制电路2个部分组成。其电路原理图如1。 采用双闭环控制的充电器设计
[电源管理]
双<font color='red'>闭环控制</font>的充电器电路原理图
安森美推出同步整流控制器优化用于LLC谐振转换器拓扑结构
eeworld网消息,PCIM 2017 –9号厅 342号展位- 德国纽伦堡–2017年5月16日 – 推动高能效创新的安森美半导体(ON Semiconductor,美国纳斯达克上市代号:ON),推出了先进的同步整流(SR)控制器优化用于LLC谐振转换器拓扑结构。FAN6248需用的额外元件最少,提供高能效,简化热管理,提升整体系统可靠性,和简化LLC电源的设计。 FAN6248是用于现代高性能电源单元(PSU)的一个理想方案,这些应用要求在一个小的空间提供高可靠性和能效。典型应用包括服务器和台式电脑、游戏机、大屏LCD TV和OLED TV、网络、电信和LED照明。 该器件采用先进混合的SR控制法,结合瞬时漏电压检测
[半导体设计/制造]
高压大电流脉冲振荡器电路
高压大电流脉冲振荡器电路
[模拟电子]
<font color='red'>高压</font>大电流<font color='red'>脉冲</font>振荡器电路
智能车速度控制pid(电机闭环控制算法)
智能车电机闭环控制算法 对于智能车的电机闭环控制算法,我之所以标题没有写上 智能车电机PID 闭环控制算法 是因为PID 算法根本就不是特别好的适用于智能车这种变化很 快的系统,对于智能车,电机的调速可以说是时时刻刻再进行调速控制的,我 上面说描述的经典PID 算法,都是针对一些惰性系统,也就是说是变化比较慢 的系统的,所以对于智能车的电机调速采用完完整整的PID 算法,是根本不可 取的,及时采用了,你必须要经过一些变换和改进才能使用。以上的简述只是 鄙人自己的看法,如有错误,请各位高手指正。 现在估计您会疑问,PID 不适用于智能车的电机控制,那什么才适用呢? 鄙人原来做过智能车
[单片机]
基于51单片机的多功能数控电流源设计
在现代科学研究和工业生产中,精度高、稳定性好的数控直流电流源得到了十分广泛的应用。以往所采用的电流源多数是利用电位器进行调节,输出电流值无法实现精准步进。有些电流源虽能够实现数控但是往往输出的电流值过小,且所设定的输出电流值是否准确不经测试无法确定,不够直观。为此,结合单片机技术及V/I变换电路,利用闭环反馈调整控制原理设计制作了一种新型的基于单片机控制的高精度数控直流电流源。 本系统以AT89S52单片机为控制器,通过人机接口(按键和LCD显示屏)来设置输出电流,设置步进等级1 mA,并可同时显示预设电流值和实际输出电流值。本系统由按键设置输出电流值,经单片机计算后通过D/A转换器(TLV5618)输出模拟信号,再经过V/
[单片机]
基于51单片机的多功能数控电流源设计
一种具有自限流功能的LLC谐振变流器拓扑
一、引言 在发电厂和变电站中,供给二次回路的直流电源称为电力操作电源。电力操作电源主要用于向控制、保护、信号、自动装置回路以及操动机械和调节机械的传动机构供电,同时还作为独立的事故照明电源。目前发电厂和变电站普遍应用的操作电源是硅整流型操作电源(又称相控式操作电源),它采用硅整流型充电装置对蓄电池充电,由蓄电池向二次回路提供不间断的直流电源。但这种电源存在许多缺陷,如充电装置效率差、稳压稳流精度低、纹波大、电池保持容量低、寿命短等。随着电力电子技术的发展,传统的硅整流型电源正在逐渐被高频开关电源取代。高频开关电源具有体积小、重量轻、效率高、电气性能好等许多优点。此外,由于高频开关电源采用模块化结构和n+1备份方式,使电源装
[电源管理]
频率跟踪在大功率串联谐振全桥逆变产品中的重要性
  大功率(15KW以上) 感应加热 产品通常会采用全桥逆变技术。在其工作时,由于负载变化、环境温度变化及调功要求等原因会引起的工作频率的变化。为了使逆变器始终工作在适合的频率上从而得到相应恒定的功率,控制电路就必须能够实现对负载频率的跟踪。频率跟踪电路不仅要对负载频率进行跟踪、采集,更要通过锁相技术将负载工作频率锁定在与控制信号频率同频,从而得到相应恒定的功率。更进一步可以对采集到的负载工作频率信号进行处理用于实现其他功能,如移相 PWM (脉宽调制Pulse Width Modulation)中的移相调功。从这个意义上讲,频率跟踪在全桥逆变应用中是十分重要的。   串联谐振逆变器基本结构 串联谐振逆变器基本结构
[电源管理]
频率跟踪在大功率串联<font color='red'>谐振</font>全桥逆变产品中的重要性
小广播
最新电源管理文章
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved