随着汽车工业的迅猛发展,环境污染和能源短缺问题口益突显,新能源汽车的研究越来越受到重视。超级电容作为纯电动汽车的辅助动力源,以其较高的功率密度在纯电动汽车领域有了广泛的应用。如果超级电容直接连接在逆变器的输入端,不能满足恒压放电和恒流充电的需求,因此必须在其间串入双向DC/DC变换器。单向DC/DC变换器已经有了成熟的控制技术,但在双向DC/DC变换器中不同功率流向的控制模型不尽相同。因此,研究双向DC/DC变换器的控制模型,提出有效的控制方案是研究的重点。本文以纯电动汽车用大功率双向DC/DC变换器为对象,研究双向DC/DC变换器及其控制系统。
1 纯电动汽车电力传动系统
纯电动汽车电力传动系统原理如图1所示,该PEV的电力传动系统是由锂离子蓄电池和超级电容提供能量。锂离子电池作为主要能源保证该车的正常行驶,超级电容作为辅助能源在该车加速、爬坡时为电机提供能量,并在减速、下坡时通过回馈制动为超级电容充电。根据以上特点,需要在超级电容与逆变器之间串联大功率双向DC/DC变换器才能满足超级电容的恒压放电和恒流充电。
2 双向大功率DC/DC变换器
双向DC/DC变换器按是否含变压器分为隔离型和非隔离型。隔离型模块的可靠性高,但成本高、效率差。在大功率输入输出的情况下,非隔离型双向DC/DC模块以其简单的结构和较高的功率传输效率成为理想的选择。双向DC/DC变换器模型如图2所示。
超级电容在放电时,双向大功率DC/DC变换器工作在boost模式下。此时,IGBT1始终保持在关断状态,其反并联的二极管作续流二极管用,仅控制IGBT2的开断以保持恒压放电。超级电容充电时,双向大功率DC/DC变换器则工作在buck模式下。此时,IGBT2始终保持在关断状态,其反并联的二极管作续流二极管用,仅控制IGBT1的开断以保持恒流充电。
下面主要分析双向大功率DC/DC变换器在boost和buck模式下的电气参数、控制参数和输出特性的关系。
3 双向DC/DC变换器控制
对于该电路,在boost模式情况下,电感L的大小通常根据电路的纹波要求来设计。电路工作在连续模式下,可知。由于超级电容的输出电压会随着功率的输出而降低,因此通常我们考虑输出电压在一个范围内变化。
本文中超级电容输出电压的变化范围是150V≤Ui≤250 V,Uo稳定在500 V。由此,可计算占空比的取值范围
上式可以看成是仅含变量D的一个函数。对函数L(D)求导后发现,当D=1/3时,L取得最大值。保证电路工作在连续导电模式下,△iL≤ 2IL。考虑到电感会饱和,除此之外,IGBT的峰值电流和电压损耗问题也需要减小。在实际中我们通常取△iL≤0.25IL。在本文中,取△iL ≤0.25IL。fs为开关管的工作频率,当频率高的时候,输出谐波含量少,有利于滤波。但是,开关损耗增加。当开关频率低时,波形质量会很差。因此,应综合选取开关管频率。本文选取开关频率为20 kHz。
根据以上计算,电感取值为1 mH,电容取值为470μF。当变换器工作在boost模式下,需要得到恒定的输出电压,此时选用电压反馈控制方式。如图3所示,将输出电压采集后与参考电压比较,通过PI调节器后,与三角波比较生成PWM波控制IGBT的开断。
此模式下,boost电路的输入端为超级电容,初始电压为250 V。放电过程中,电压呈指数下降,放电时间为20 s,电压最后为150 V。在此过程中,保证变换器输出端电压始终为500 V,如图4所示。
当变换器工作在buck模式下,需要得到恒定的电流为超级电容充电,此时选用电流反馈控制方式。如图5所示,采集输出电流与给定电流比较,通过PI调节器后,再与三角波比较,生成PWM波控制IGBT的开断。
此模式下,buck电路是输入为逆变器的直流侧,初始电压为500 V。充电时间10 s。电压下降,输出充电电流恒为200 A。图6中为buck模式下输入电压、输出电流图。
4 结束语
本文分析了大功率双向DC/DC变换器在纯电动汽车中与超级电容器的配合应用,在不同的功率流向时,需要考虑不同的控制方式。通过仿真分析,在不同的时间对在同一电路中的两个开关管分别控制,能达到超级电容恒压放电和恒流充电的工程要求,证明该系统稳定可行。
关键字:PEV DC/DC 变换器
编辑:探路者 引用地址:基于PEV的双向DC/DC变换器的研究 2012-08-23
推荐阅读最新更新时间:2023-10-17 15:02
设计高效AC/DC电源的方法
电源就像保险单-你知道自己需要它,但你宁可永远都不必用到它。同样,你的下一代电子电子产品也离不开电源。从另一方面看,电源又和保险单不一样,因为在过去的20多年里,保险单一直在不断涨价,而电源则越来越小,功率越来越高,成本越来越低。缩小电源体积以给系统其它功能留出更多空间的趋势将继续下去。而且,电源还必须符合已有的标准格式,以避免系统重新设计。
对于AC/DC电源来说,推动这一趋势的并不是技术上的新突破,而是良好的设计,以及创新性地结合各种工艺和技术的优点来开发出性能高于平均水平的电源。本文将要讨论的是常见的100W-200W的AC/DC电源设计,其中着重强调的是结合各种方案来设计外形最小成本最低的电源,并实现最高的效率和应用
[电源管理]
高端工业翘首以盼,TI 32位精密ADC破茧成蝶
ADC在高端工业领域的瓶颈:巧妇难为无米之炊
目前,很多工业类厂商在做高端产品时显得有点 巧妇难为无米之炊 ,由于大部分性价比较高的全是24位 - ADC,即使想提高精度也只能在不同厂商的24位 - ADC中挑选,选一些温漂较低的、有效位(ENOB)较高的、带高精准的基准的,尽量向24位靠拢,但其实都离不开24位的架构。更要命的问题在于:一个24位ADC,真正精度达不到24位,尤其是利用累加原理实现的 - ADC。我们来看一些典型案例。
PLC系统发展至今,其中的ADC位数从10位到20位不等,16位ADC是目前应用最多的,而24位ADC已经是高位数了。一些PLC应用,如石油勘探,对温度
[工业控制]
DC/DC模块电源如何满足EMI设计
金升阳迎合市场需求在国内率先推出超小体积DC/DC模块电源URA_LD-20W系列,该系列电源满足EMI EN55022 CLASS B要求,并顺利通过了赛宝专业测试,卓越的产品性能使它非常适用于电压波动较大,对电磁环境敏感或要求比较高的场合。
电磁干扰对电源效率、安全性、可靠性的影响日益成为人们关注的热点,电磁兼容性指标要求已是衡量电源质量的重要指标。
URA_LD-20W在-40°C 至 +85°C 的宽温度范围内工作,且100% 经过老化测试,它采用PWM控制模式,能够保证快速的电压和负载瞬态响应,具有高功率密度、体积小、效率高、输入电压范围宽、低干扰、低纹波、低噪声等特点。该系列产品同时还具备输出过流/过压
[电源管理]
德州仪器推出3 MHz、100 mA降压DC/DC转换器
高性能稳压器集成旁路开关与 DCS-Control™ 技术,可延长电池使用寿命
日前,德州仪器 (TI) 宣布推出一款集成旁路开关与独特 DCS-Control 技术的 3 MHz、100 mA 同步降压 DC/DC 转换器。该最新器件在基于 MSP430™ MCU 的低功耗无线应用中,可比同类竞争解决方案的电池运行时间延长 20%。该高性能器件工作电流仅为 25 uA,可支持多种低功耗应用,如蓝牙 (Bluetooth®) 低功耗系统、仪表计量与楼宇技术、移动电话、消费类电子、医疗以及人机接口等设备。
在传输与接收模式下,TPS62730 不但可实现高达 95% 的转换效率,而且还可降低电池电流损耗。超低功
[电源管理]
DC-DC升压IC测试及EN脚讲解
DC-DC是硬件开发过程中常用的一种器件,主要用于获取特定的直流电压,此处不对DC-DC的工作原理进行讲解,只对使用过程中发现的一个关于带EN脚的几款DC-DC升压IC的小问题进行展示。 下图所示为MT3608的应用电路图 其输出电压为可调值 ,通过R1与R2进行调节设置 其中EN脚即为IC的使能引脚 经过测试,得到如下结果: 测试设备:台式直流源 万用表 测试IC:MT3608(可调升压DC-DC IC) VIN设置3.93V 设计输出5.1V EN脚置地 输出脚电压为3.76V EN脚悬空 输出脚电压为4.73V EN脚接VCC 输出脚输出5.12V 下图所示为ME2188C50M5G的应用电路图 其输出电压为固定
[测试测量]
浅谈音视频ADC在动态范围上的应用
ADC作为模拟与数字信号转换的渠道,是当下数字信号的主要来源之一。随着短视频平台、AR/VR的兴起,产出音视频图像内容已经与我们息息相关了,对音视频ADC的各项指标提出了新的要求,尤其是在动态范围这一关键指标上。 音频用ADC 在音频DAC中,由于调制方式和采样率的原因,24bit到32bit的ADC如今已经成了常客。虽然提升1bit就会意味着更高的功耗,但对于音频这种原本转换与处理和转换就属于低功耗的应用,位深自然是越高越好。而且音频ADC厂商们都会采用一些结构设计,用于进一步提升ADC的动态范围。 TI作为音频转换器大厂,在收购了Burr-Brown后,陆续推出了一系列音频ADC和DAC产品。以PCM1820-Q1为例
[嵌入式]
流水线ADC设计中的数字校淮算法与实现
0 引言
模数转换器(ADC)是联系模拟世界与数字系统的关键环节。在不同的应用领域,对ADC的性能需求也不同。在近年的国际固态电路大会(ISSCC)上发表的相当多的关于高速高精度ADC的文章表明,流水线ADC已经成为研究热点。流水线ADC采用流水作业的方式,在采样速率和转换精度上较其它类型的ADC有较大的优势,但是流水线ADC中存在电容失配、比较器失调、非理想运放、工艺误差等非理想因素,当流水线ADC的转换精度达到12位以上时,这些非理想因素对其性能有较大影响。传统的模拟电路校准技术已无法满足高精度的要求,而近年来随着数字系统的高速发展,采用数字方式对误差进行校准已经成为大趋势。数字校准技术得到了越来越广泛的应用。
本文针
[嵌入式]
CDC906 – 可定制编程的 3-PLL 时钟合成器/乘法器/除法器
CDC906 是目前市场上体积最小且功能强大的 PLL 合成器/乘法器/除法器之一。尽管其物理外形非常小巧,但却极为灵活。该器件能够在特定输入频率下生成几乎独立的输出频率。 输入频率可通过 LVCMOS、差动输入时钟或单个晶振产生。通过 SMBus 数据接口控制器可以选择相应的输入波形。
为了获得独立的输出频率,每个 PLL 的参考除法器 M 都能设置于 1 至 511 的范围内,反馈除法器 N 则可设置于 1 到 4095 的范围内。然后将 PLL-压控振荡器 (VCO) 频率路由至可自由编程的输出开关矩阵,再路由至 6 个输出中的任意一个。开关矩阵包括一个附加的 7 位后除法器(1 到 127 的范围)以及一个针对每个输
[新品]