峰值电流模式升压DC-DC变换器中斜坡补偿的分析与设计

最新更新时间:2012-08-29来源: 电源技术关键字:峰值电流  DC-DC  变换器 手机看文章 扫描二维码
随时随地手机看文章
  开关电源按控制模式可以分为电压模式和电流模式两大类。相比电压模式而言,电流模式因动态响应快、补偿电路简单、增益带宽大、易于并行输出等优点而获得广泛应用。但是,在峰值电流模式中存在如下问题:占空比大于50%时系统的开环不稳定;由于峰值电流而非平均电感电流而产生的系统开环不稳定性;次谐波振荡;抗干扰能力差,特别是当电感中的纹波电流成分很小时,这种情况更为严重。解决上述问题的办法很简单,就是增加一个斜坡补偿电路。本文介绍了固定频率、峰值电流模式升压DC-DC变换器斜坡补偿的基本原理,设计了一种简单实用的斜坡补偿电路。

斜坡补偿的基本原理
  i_sense是对功率开关管的电流采样,相当于对ton时间内电感电流的采样。将采样电流i_sense转换成电压信号Vi,再输入到PWM比较器,与误差放大器的输出Vea比较,从而控制功率开关管的导通与关断,实现稳定输出电压的功能。显然,误差放大器的输出Vea确定了电感电流的峰值,这里假设这个电流为IRef。
首先考虑无斜坡补偿的情况。

  从t=nT到t=(n+1)T的一个周期内(T为开关周期),电感电流线性上升到Iref,然后开始下降。设t=nT时的电感电流为in,t=(n+1)T时电感电流为in+1,输出电压为v,占空比为D。

  若考虑稳态情况下电流in存在的微小扰动,由升压公式v/Vin=1/(1-D),并且忽略公式(2)中后两项in的高阶项,则有:

  设l=-D/(1-D),则为使系统稳定,l必须满足-1现在考虑叠加一个斜率为mc的斜坡补偿电流信号到电感电流上的情况,这里mc>0。这时,对电感电流上升和下降两种情况列方程得:

  要想使系统稳定,则l必须满足-1由公式(4)可以发现叠加一个正的斜坡信号(mc)到电感电流上相当于叠加一个负的斜坡信号(-mc)到Iref上,即:

  在占空比D一定的情况下,若D<0.5,则不需要斜率补偿即可实现系统稳定;若D>0.5,则要获得系统稳定,补偿的斜率大小应满足:

斜坡补偿电路的设计和实现
  斜坡补偿的实现可以通过对一个斜坡电流信号i_slope和电感电流采样信号i_sense求和,然后输入到一个I-V电路产生Vi,再和误差放大器的输出Vea进行比较以设定占空比,稳定输出电压。采用恒定电流充放电型振荡器可以获得固定频率、固定占空比的时钟脉冲信号和斜率恒定的斜坡电压信号。时钟脉冲信号用来设定电压变换器的工作频率和最大占空比,而且可以使控制电路有效地实现电流模式的逐个脉冲控制。斜坡电压信号可以用来产生作为斜率补偿用的斜坡电流信号i_slope。

振荡器电路
  其中MP4~MP8、MN6~MN9为比较器,它与反相器INV1、INV2、INV4构成施密特触发器,MP3、MP2为电流源。该振荡器电路需要一个基准电压信号VREF来设定施密特触发器的上、下阈值电压,电流源IREF用来产生对电容C进行充放电的恒定电流。VREF和IREF均可由升压变换器系统内部的基准电压源和基准电流源提供。

斜坡补偿信号的产生
  振荡器中电容C上的电压虽然是斜坡信号,但是电压求和不如电流求和简单,所以采用一个V-I电路把斜坡电压转换成斜坡电流,这样更容易实现斜坡补偿。具体实现电路如图3所示。

  VL为施密特触发器的下阈值电压;VC为定时电容C两端的电压,VC≥VL。MP11、MP12、MP15是一组电流大小相等的镜像电流源。当VC=VL时,MN19、MN20、MN21的电流相等,即等于电流源的电流值。当VC增大,MP14上的电流减小, MP12上的一部分电流经过R4流向MP13。MN21与MN20是电流镜结构,所以,MN21的电流减小。这时,i_slope就等于流过R4的电流。

  假设MP11、MP12、MP15完全匹配,MP13、MP14完全匹配,MP19、MP20、MP21完全匹配,ro为MP14的小信号输出电阻:

  在I1和C固定的情况下,改变R4的阻值大小即可调节i_slope的上升斜率。

  为了保证升压变换器稳定工作,需要对电感电流叠加一定斜率的补偿信号,并且要满足式(8)的要求。本电路的补偿方法是将i_slope和i_sense一起输入到一个求和电路进行叠加,所以i_slope斜率应满足:
仿真结果与分析
  在0.8mm的BiCMOS工艺下,用Hspice对振荡器电路和斜坡补偿电路进行仿真。

  振荡器时钟脉冲CLK输出波形、斜坡电压信号VC波形以及斜坡补偿信号i_slope输出波形,其中VDDA为3V,VSSA为0V,IREF为0.5mA,VREF为1.24V,由此得到振荡器的频率为622kHz。

结语
  本文通过分析峰值电流模式升压DC-DC变换器中斜坡补偿原理,提出了一种简单实用的斜坡补偿电路。仿真结果表明,只要合理调节V-I电路中的电阻R4的值,就能够得到保证系统稳定的斜坡补偿量。■

关键字:峰值电流  DC-DC  变换器 编辑:探路者 引用地址:峰值电流模式升压DC-DC变换器中斜坡补偿的分析与设计

上一篇:采用Topswitch系列芯片的单片开关电源效率研究
下一篇:在功率因数校正 (PFC) 预调节器中使用升压跟随器的好处

推荐阅读最新更新时间:2023-10-17 15:02

推挽变换器中的直流滤波电容设计公式
(1):电路图 (2):设计公式 为电感电流的最大纹波与电感电流的最大平均值之比。
[模拟电子]
推挽<font color='red'>变换器</font>中的直流滤波电容设计公式
LLC 串联谐振变换器 FSFR2100
  传统的 LC 串联谐振 开关电源" target="_blank" 开关电源 为了实现小型化,被迫提高其工作频率.以减小滤波电感和开关变压器的体积。但频率的提高却使开关损耗增加而效率下降,且开关噪声变大。   LLC 串联 谐振 变换器" target="_blank" 变换器 主要采用电流谐振、只在开关从 ON 到 0FF 及 OFF 到 ON 期间是 电压 谐振,其开关波形为正弦波,因而在给开关元件加上电压时,不会流过大电流;而且利用开关元件的寄生电容实现零电压开关 (ZVS) ,可制成高频、高效及噪声极低的变换器。   传统 LC 串联谐振变换器电路如图 1 所示 ( 去掉 Lm) 。 Lr 为开关变压器漏感, Cr 为
[电源管理]
LLC 串联谐振<font color='red'>变换器</font> FSFR2100
超低静态电流升压DC-DC转换器
  奥地利微电子公司推出AS1310超低静态电流、滞回型升压DC-DC转换器,专为低负载(60mA)所优化,最高效率可达92%。AS1310升压转换器仅消耗1 μA电流,提供业内最低的静态电流,电池供电电压非常广泛,为0.7V至3.6V,并提供1.8 V至3.3V的输出电压。即使负载低至100μA,效率仍可达85%,极大地延长了电池寿命。   由于许多电池供电应用的电源电压正从3V转向1.8V,AS1310升压DC-DC转换器的设计可以兼顾二者,而许多同类产品则无法做到这一点。当输入电压高过输出电压时,器件将进入直通模式,输入将直接连接至输出电压。AS1310升压DC-DC转换器的功能和特性使之非常适用于单节或双节电池供电的设备,
[电源管理]
采用LT1307构成的高压回扫变换器电路
采用LT1307构成的高压回扫变换器电路
[电源管理]
采用LT1307构成的高压回扫<font color='red'>变换器</font>电路
采用超低功耗、降压DC-DC稳压器ADP5300/ADP5301/ADP5302/ADP5303
某些应用,例如双极性放大器、光模块、电荷耦合器件(CCD)偏置等,通常需要通过正输入电压来提供负输出电压。电源管理系统的设计人员需要多功能开关控制器和稳压器,以便解决这些电源管理挑战。ADI公司的超低功耗、降压DC-DC稳压器ADP5300/ADP5301/ADP5302/ADP5303,提供超低静态电流、同步降压功能。这些稳压器的输入电源电压范围为2.15 V至6.50 V,可降压至0.8 V,并提供最高500 mA的输出电流。 虽然ADP5300/ADP5301/ADP5302/ADP5303是针对同步降压应用而设计,但这些器件的多功能性使得它们能够在不增加成本、外部元件数量和解决方案尺寸的情况下实现反相降压/升压拓
[电源管理]
采用超低功耗、降压<font color='red'>DC-DC</font>稳压器ADP5300/ADP5301/ADP5302/ADP5303
采用X2Y技术的DC-DC转换器
         许多OEM厂商都存在因DC-DC转换器固有的内部开关模式产生的电磁兼容(EMC)问题。开关噪声电压需要在输出时滤掉。传统的几个分散元件能够提供足够的滤波性能和在大批量生产时依然保持成本效益。过去几年,一些发展趋势增加了方案设计的复杂性。在要求电子产品尺寸更小化、速度更快化的推动作用下,并且要求更多的电路提供附加特性,导致要求更加严格的EMC以保持设计的完整性。   要求分散元件能够提供更宽的滤波带宽,保持成本效益,而且还能从整体上提供更小的系统封装尺寸,这一要求引领了行业寻求新的解决方案。     目前,X2Y®技术作为替换5-7个分散器件的滤波器,使用于直流电机中。节省成本和增加宽带滤波性能使得X2Y®技
[电源管理]
采用X2Y技术的<font color='red'>DC-DC</font>转换器
基于LT3573隔离型反激式DC-DC开关电源的设计
   1  引言   自从1994年单片开关电源问世以来,为开关电源的推广和普及创造了条件。开关电源的应用涉及到各种电子电器设备领域,如程控交换机、通讯、电子检测设备电源、控制设备电源等都已广泛地使用了开关电源,更促进了开关电源技术的迅速发展。各种新技术、新工艺和新器件如雨后春笋般,不断问世,使得开关电源的应用日益普及。开关电源高频化是其发展的方向,从最初的20kHz提高到现在的几百kHz甚至几兆赫兹,高频化带来开关电源的小型化。目前,开关电源正朝着高效节能、安全环保、小型化、轻便化方向发展。    2  LT3573简介   LT3573是一种单片开关稳压器件,专为隔离型反击式拓扑结构而设计。在隔离型反激拓扑结构中,
[电源管理]
矩阵式变换器双向开关四步换流技术研究
摘要:对矩阵式变换器(MC)中双向开关的安全换流课题进行了研究。分析了各种换流方案,进而提出采用可编程逻辑元件(GAL)的四步换流方案,仿真和实验的结果证实了这种换流方案的可行性与可靠性。 关键词:矩阵式变换器;双向开关;可编程逻辑器件;四步换流 引言 1979年,意大利学者M.Venturini第一次提出了矩阵式变换器存在理论及控制策略。与传统的交—交变频器及交—直—交变频器相比,矩阵式变频器具有明显的优点:高功率因数、低谐波污染、可四象限运行、无中间储能环节、体积小且效率高。随着交流变频调速技术成为当代电气传动中实现自动化和节能的主要技术手段,矩阵式变换器(MC)的研究已成为电力电子技术研究的热点之一。 1 矩阵
[应用]
小广播
最新电源管理文章
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved