开关电源自动调节系统的时域性能指标

最新更新时间:2012-09-17来源: 维库电子关键字:开关电源  自动调节系统  时域性能指标 手机看文章 扫描二维码
随时随地手机看文章

  图所示为线性时不变自动调节系统的典型阶跃响应曲线y(u),其输人为单位阶跃函数I(t),如果令 其输出终值(即稳态值)为I,设置允许的误差带(以下简称允差带),如±2%或±5%,则系统响应在 达到稳态以前常常表现为阻尼振荡过程。下面的一些性能指标说明了一个自动调节系统的瞬态响应特性。 不过这里某些指标的定义与IEC标准稍有差别。


  图 线性时不变自动调节系统的典型阶跃响应曲线y(t)

  (1)延迟时间td,输出响应第一次达到稳态值Y=1的10%所需时间。

  (2)上升时间tr,输出响应从稳态值的10%上升到90%所需的时间。

  (3)峰值时间tp,输出响应到达第一个峰值所需的时间期。

  (4)最大超调量Mp,表示输出响应超出稳态值的最大值

  (5)恢复时间(调整时间)ts,输出响应到达允差带,并一直保持在这一范围内所需的时间。

关键字:开关电源  自动调节系统  时域性能指标 编辑:探路者 引用地址:开关电源自动调节系统的时域性能指标

上一篇:开关电源的时域法综合系统的步骤
下一篇:开关电源的时域数学模型与系统的时域响应

推荐阅读最新更新时间:2023-10-17 15:03

什么是反转式开关电源
  反转式开关电源又称为升降压式开关电源。无论开关管VT1之前的脉动直流电压高于或低于输出端的稳定电压,电路均能正常工作。   当开关管VT1导通时,电感L储存能量,二极管VD1截止,负载RL靠电容C上次的充电电荷供电。当开关管VT1截止时,电感L中的电流继续流通,并感应出上负下正的电压,经二极管VD1向负载供电,同时给电容C充电。
[电源管理]
如何解决开关电源的电磁干扰问题?
  近年来,开关电源以其效率高、体积小、输出稳定性好的优点而迅速发展起来。但是,由于开关电源工作过程中的高频率、高di/dt和高dv/dt使得电磁干扰问题非常突出。国内已经以新的3C认证取代了CCIB和CCEE认证,使得对开关电源在电磁兼容方面的要求更加详细和严格。如今,如何降低甚至消除开关电源的 EMI 问题已经成为全球开关电源设计师以及电磁兼容(EMC)设计师非常关注的问题。本文讨论了开关电源电磁干扰形成的原因以及常用的EMI抑制方法。   1开关电源的干扰源分析   开关电源产生电磁干扰最根本的原因,就是其在工作过程中产生的高di/dt和高dv/dt,它们产生的浪涌电流和尖峰电压形成了干扰源。工频整流滤波使用的大
[电源管理]
开关电源原理与设计(连载七)反转式串联开关电源储能滤波电容的计算
      1-3-3.反转式串联开关电源储能滤波电容的计算       反转式串联开关电源储能滤波电容参数的计算,与串联式开关电源储能滤波电容的计算方法基本相同。但要注意,即使是在占空比D等于0.5的情况下,滤波电容器充、放电的时间都不相等,滤波电容器充电的时间小于半个工作周期,而电容器放电的时间则大于半个工作周期,但电容器充、放电的电荷是相等的,即电容器充电时的电流大于放电时的电流。这是整流滤波电路的普遍规律。       从图1-8可以看出,在占空比D等于0.5的情况下,电容器充电的时间为3T/8 ,电容充电电流的平均值为3iLm/8或3Io/2 ;而电容器放电的时间为5T/8,电容放电电流的平均值为0.
[电源管理]
<font color='red'>开关电源</font>原理与设计(连载七)反转式串联<font color='red'>开关电源</font>储能滤波电容的计算
基于UCC28600准谐振反激式开关电源的方案
  本文提出了一种基于UCC28600控制器的准谐振反激式 开关电源 的设计方案,该方案分析了准谐振反激式开关电源的工作原理及实现方式,给出了电路及参数设计和选择过程,以及实际工作开关波形。实验证明,该方案中所设计的准谐振反激式开关电源具有输入电压范围宽、转换效率高、低EMI、工作稳定可靠的特点。准谐振技术降低了MOSFET的开关损耗,提高产品可靠性。     引言     准谐振转换是十分成熟的技术,广泛用于消费产品的电源设计中。新型的绿色电源系列控制器实现低至150mW的典型超低待机功耗。本文将阐述准谐振反激式转换器是如何提高电源效率以及如何用UCC28600设计准谐振电源。     常规的硬开关反激电路     图1所示为常
[电源管理]
基于UCC28600准谐振反激式<font color='red'>开关电源</font>的方案
开关电源原理与设计(连载24)反激式开关电源变压器初级线圈电感量的计算
      反激式开关电源变压器初级线圈电感量的计算       反激式开关电源与正激式开关电源不同,对于如图1-19的反激式开关电源,其在控制开关接通其间是不向负载提供能量的,因此,反激式开关电源在控制开关接通期间只存储能量,而仅在控制开关关断期间才把存储能量转化成反电动势向负载提供输出。在控制开关接通期间反激式开关电源是通过流过变压器初级线圈的励磁电流产生的磁通来存储磁能量的。根据(1-98)式和(1-102)式,当控制开关接通时,流过变压器初级线圈的最大励磁电流为:             (1-123)式就是计算反激式开关电源变压器初级线圈电感的公式。式中,L1为变压器初级线圈的电感,P为变压器的输入功率,Ton为
[电源管理]
<font color='red'>开关电源</font>原理与设计(连载24)反激式<font color='red'>开关电源</font>变压器初级线圈电感量的计算
一网打尽开关电源拓扑结构的优缺点
看电压或电流波形的好坏,工程师通常会用其幅值、平均值、有效值、一次谐波等参量互相进行比较,其中幅值和平均值最为直观,因此,电压或电流的幅值与其平均值之比被称为脉动系数S;,也有人用电压或电流的有效值与其平均值之比,则称为波形系数K。小编在本文中就将盘点 开关电源 拓扑结构的优缺点,让它们尽在你的掌握之中。 首先先列出电压和电流的脉动系数Sv、Si以及波形系数Kv、Ki的表示: Sv = Up/Ua —— 电压脉动系数 (1) Si = Im/Ia —— 电流脉动系数 (2) Kv =Ud/Ua —— 电压波形系数 (3) Ki = Id/Ia —— 电流波形系数 (4) 上面4式中,Sv、Si、Kv、Ki分别表示:电压和电流的脉动
[电源管理]
影晌开关电源可靠性的因素
  从各研究机构研究的成果可以看出,环境温度和负载率对可靠性的影响很大,这两个方面对开关电源由于有很大的影响,所以下面将从这两个方面分析如何设计出高可靠的开关电源。其中,PD为使用功率;PR为额定功率。UD为使用电压;UR为额定电压。   1)环境温度对元器件的影响   表1~表3分别列出环境温度对半导体器件、电容器和电阻器可靠性的影响。表1和表13以PD/PR=0.5使用负载设计,而表12则以UD/UR=0.65使用负载设计。   表1 环境温度对半导体器件可靠性的影响   由表1可知,当环境温度Ta从20℃增加到80℃时,半导体器件的失效率增大到30倍。   由表2可知,当环境温度Ta从20°C增加到80°
[电源管理]
影晌<font color='red'>开关电源</font>可靠性的因素
一种基于软开关三电平DC/DC开关电源的研制
1 引言 目前,开关电源正朝着高频、高效、环保等方向发展。与传统拓扑结构相比,三电平变换器由于具有开关管电压应力为输入直流电压的一半,适合输入电压较高的场合,输出电压谐波小等优点,从而备受关注。此外,伴随着高频化发展,出现了软开关技术,并结合三电平产生了不同拓扑的DC/DC变换器。传统ZVS半桥三电平DC/DC变换器轻载时滞后管难以实现ZVS,且开通损耗严重。ZVZCS变换器消除了ZVS三电平变换器零状态时变压器初级环流,减小了初级通态损耗,同时改善了占空比丢失问题,近年来得到了广泛研究。 这里提出一种新型ZVZCS半桥三电平DC/DC变换器,其次级采用了一个简单的无源筘位网络,通过这个无源箝位网络实现了超前桥臂在一定负载范围内的
[电源管理]
一种基于软开关三电平DC/DC<font color='red'>开关电源</font>的研制
小广播
最新电源管理文章
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved