变压控制实验结果及分析

最新更新时间:2012-10-15来源: 维库电子关键字:变压控制  实验结果 手机看文章 扫描二维码
随时随地手机看文章

  变压控制的实验原理如图1所示。


  通过改变逆变桥的供电电压,来调节加人电机绕组中的电流大小,以达到对电机的电流和转速进行控制的目的。因为电机控制的核心芯片MC33035的供电电压范围是10~30V,如果在实验中供电电压调节至10V以下(因原来供电的直流电源的电压为+28V,因此变压实验不会超过30V的上限),极有可能导致MC33035的低压保护动作或者逻辑控制不正确,从而使实验无法正常进行,甚至导致电机故障。因此,进行变压控制实验时极有必要对MC33035(包括其他控制芯片及器件)和逆变桥分别供电,用原有的+28V直流电源为MC33035供电,0~30V变压源为逆变桥供电。
  同时,为了使原来的电流保护电路仍然起作用,必须使两个电源共地。
 
  在验证了控制系统各项功能正常并且保护有效的情况下,在磁悬浮控制力矩陀螺上进行了11000r/min的高速变压实验,结果如表1所示。


  以上实验结果与理论分析的变压供电能够减小损耗的结论不符,由分析得出的原因是由于采用逆变桥(MPM3003)与控制器(MC33035)分别供电,可能导致逆变桥上侧P沟道MOSFET门极的驱动信号电压值高于其源极的供电电压,导致了开关电路引起的功耗增加。此功耗的增加包括逆变器本身的功耗增加,和由此引起的换相滞后使电机处于非最佳换相状态致使电机本身功耗增加两部分。
 
  在以上分析的基础上,又采用了逆变桥(MPM3003)与控制器(MC33035)共同变压的实验方案,以此来验证以上分析的正确性及控制芯片与逆变器芯片的电压匹配问题,其原理如图2所示。

  该方案只需将原有的模拟控制电路的供电电源改为0~30V的变压电源,仍然采用锁相环稳速的方式自动对速度进行控制,实验中应注意将变压范围保持在控制芯片最低工作电压以上(>10V)。变压实验中采集的相电压和相电流的波形如图⒋13所示,实验数据如表2所示。

         图3 不同母线电压下电机相电压和相电流波形

  由以上波形及数据可见,随着供电电压的降低,电机绕组中的电流脉动幅值明显降低,电机在相同转速下的功耗明显减小(功耗减小40%以上),这与之前的理论分析结果完全相符,说明PWM分量在电机本体中引起的损耗不可忽视,证实了通过减小电流脉动幅值来降低功耗的正确性,同时也验证了实验结果的确是由控制芯片和逆变器芯片的电压值匹配问题所导致。
 
  虽然通过变压控制的方法可以明显减小电机的功耗,但是在工程应用上它也有非常明显的缺陷:压控变压源的工程实现较难(虽然压控变压源在工程上是可以实现的,但是在航天应用的特殊背景下该方案必定增加系统复杂性、降低可靠性和增加重量);降低供电电压在降低功耗的同时也降低了电机的最高转速(虽然降低系统的供电电压可以减小功耗,但是随着供电电压的降低,电机的最高转速也会降低,因此不适合高转速的应用场合)。

关键字:变压控制  实验结果 编辑:探路者 引用地址:变压控制实验结果及分析

上一篇:德州仪器推出新型 Hercules™ TMS570 ARM® 安全微控制器
下一篇:让高功率电源获得96%效率的交错式PFC控制器

推荐阅读最新更新时间:2023-10-17 15:04

ATmega16单片机构成的干式变压器智能控制器介绍
  1工作原理   温控仪由温度监测、信号处理、输出控制三部分组成。系统框图如图1所示,它通过预埋在 变压器三相绕组中的三只铂电阻传感器获取绕组温度值,经信号调理电路处理后直接送入控 制器的A/D转换输入端。微控制器根据信号数据及设定的各种控制参数,按照嵌入的软件控 制规律执行计算与处理,自动显示变压器绕组的温度值、输出相应的控制信号、控制风机的 启停,并根据当前状态输出正常、报警和跳闸信号等,同时将各种数据通过RS-485传到上 位机实现集中监控。   温控仪控制核心采用ATmegal6单片机,它是一款基于AVR RISC的低功耗CMOS 8位单片机,在 一个时钟周期内执行一条指令,可以取得1MIPS/MHz的性能,因此具有实时
[单片机]
ATmega16单片机构成的干式<font color='red'>变压</font>器智能<font color='red'>控制</font>器介绍
新型电子变压控制器IR2161
1 IR2161的主要特点 IR2161是国际整流器公司(IR)专为电子变压器而设计的智能控制集成电路。该器件能驱动低压卤素灯。IR2161把所需功能全部集于单一的8引脚DIP或SOIC封装内,从而可有效减少元件数量、简化电路并增强可靠性。 IR2161能适应不断变化的电压、频率及灯管状态,这一特点有助于设计时引入高度可靠的卤素变压器,同时可简化设计和制造过程。 该款紧凑的8引脚器件配备IR的强化高压集成电路技术,同时揉合了600V半桥驱动器、先进的过载及短路保护电路以及高温关闭和自适应控制技术,可成为除传统的基于自谐振、双极晶体管半桥电路方案以外的另一可靠选择。此外,IR2161内含以双向晶闸管为基础的标准移相调光器,因而
[电源管理]
变压控制实验结果及分析
  变压控制的实验原理如图1所示。   通过改变逆变桥的供电电压,来调节加人电机绕组中的电流大小,以达到对电机的电流和转速进行控制的目的。因为电机控制的核心芯片MC33035的供电电压范围是10~30V,如果在实验中供电电压调节至10V以下(因原来供电的直流电源的电压为+28V,因此变压实验不会超过30V的上限),极有可能导致MC33035的低压保护动作或者逻辑控制不正确,从而使实验无法正常进行,甚至导致电机故障。因此,进行变压控制实验时极有必要对MC33035(包括其他控制芯片及器件)和逆变桥分别供电,用原有的+28V直流电源为MC33035供电,0~30V变压源为逆变桥供电。   同时,为了使原来的电流保护电路仍然起
[电源管理]
<font color='red'>变压</font><font color='red'>控制</font><font color='red'>实验</font><font color='red'>结果</font>及分析
基于ATmega16单片机的干式变压器智能温度控制器设计
1工作原理   温控仪由温度监测、信号处理、输出控制三部分组成。系统框图如图1所示,它通过预埋在 变压器三相绕组中的三只铂电阻 传感器 获取绕组温度值,经信号调理电路处理后直接送入控制器的A/D转换输入端。微控制器根据信号数据及设定的各种控制参数,按照嵌入的软件控 制规律执行计算与处理,自动显示变压器绕组的温度值、输出相应的控制信号、控制风机的启停,并根据当前状态输出正常、报警和跳闸信号等,同时将各种数据通过RS-485传到上位机实现集中监控。   温控仪控制核心采用ATmegal6单片机,它是一款基于AVR RISC的低功耗CMOS 8位单片机,在 一个时钟周期内执行一条指令,可以取得1MIPS/MHz的性能
[单片机]
基于ATmega16单片机的干式<font color='red'>变压</font>器智能温度<font color='red'>控制</font>器设计
平均电流模式控制的电流检测变压器电路设计
摘要     平均电流模式控制(CMC) 要求为控制环路重建电流总波形。本文为您介绍选择具体变压器所需的一些步骤,以及如何设计一种能够满足终端应用抗变压器饱和需求的电路。我们使用的模型为功率因数校正(PFC) 拓扑。分析中将使用一种商用电流检测变压器,用于确定需要的参数,了解如何利用这种信息设计一种可抗饱和的电路。 概述     达到PFC 平均CMC 所需的电流信号重建目标意味着功率脉冲(“开启”时间)期间的电流和空转能量恢复时间(“关闭”时间)期间的电流,都必须包括在所产生的电流信号中。在高功率PFC 下,电阻传感器系统的损耗极高,因此需要使用电流变压器。在分析中,我们对PFC 电路中所需的这种电流变压器设计进行了
[电源管理]
平均电流模式<font color='red'>控制</font>的电流检测<font color='red'>变压</font>器电路设计
MAX845 控制双向开关的变压器驱动IC
变压器利用电磁感应的原理来改变交流电压的装置,主要构件是初级线圈、次级线圈和铁心(磁芯)。在电器设备和无线电路中,常用作升降电压、匹配阻抗,安全隔离等。
[模拟电子]
小广播
最新电源管理文章
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved