Σ-Δ ADC应用简介

最新更新时间:2012-11-05来源: 21ic关键字:ADC  应用简介 手机看文章 扫描二维码
随时随地手机看文章

本应用笔记旨在帮助设计人员在高性能、多通道数据采集系统(DAS)设计中优化工业传感器与高性能ADC之间的连接电路。以电网监测系统为例,本文说明了使用MAX11040 Σ-Δ ADC的优势以及如何选择适当的架构和外围器件,优化系统性能。

引言

许多高端工业应用中,高性能数据采集系统(DAS)与各种传感器之间需要提供适当的接口电路。如果信号接口要求提供多通道、高精度的幅度和相位信息,这些工业应用可以充分利用MAX11040等ADC的高动态范围、同时采样以及多通道优势。本文介绍了MAX11040的Σ-Δ架构,以及如何合理选择设计架构和外部元件,以获得最佳的系统性能。

高速、Σ-Δ架构的优势

图1所示为高端三相电力线监视/测量系统,这类工业应用需要以高达117dB的动态范围、64ksps采样速率精确地进行多通道同时采集数据。为了获得最高系统精度,必须正确处理来自传感器(例如,图1中的CT、PT变压器)的信号,以满足ADC输入量程的要求,从而保证DAS的性能指标满足不同国家相关标准的要求。

 

图1. 基于MAX11040的DAS在电网监控中的应用

 

图1. 基于MAX11040的DAS在电网监控中的应用

从图1可以看到,采用两片MAX11040 ADC可以同时测量交流电的三相及零相的电压和电流。该ADC基于Σ-Δ架构,利用过采样/平均处理得到较高的分辨率。每个ADC通道利用其专有的电容开关Σ-Δ调制器进行模/数转换。该调制器将输入信号转换成低分辨率的数字信号,它的平均值代表输入信号的量化信息,时钟频率为24.576MHz时对应的采样率为3.072Msps。数据流被送入内部数字滤波器处理,消除高频噪声。处理完成后可以得到高达24位的分辨率。

MAX11040为4通道同时采样ADC,其输出数据是处理后的平均值,这些数值不能像逐次逼近(SAR) ADC的输出那样被看作是采样“瞬间”的数值¹,²。

MAX11040能够为设计人员提供SAR架构所不具备的诸多功能和特性,包括:1ksps采样率下高达117dB的动态范围;积分非线性和微分非线性(INL、DNL)也远远优于SAR ADC;独特的采样相位(采样点)调节能够从内部补偿外部电路(驱动器、变压器、输入滤波器等)引入的相位偏移。

另外,MAX11040集成一个数字低通滤波器,处理每个调制器产生的数据流,得到无噪声、高分辨率的数据输出。该低通滤波器具有复杂的频率响应函数,具体取决于可编程输出数据率。输入端的阻/容(RC)滤波器结合MAX11040的数字低通滤波器,大大降低了MAX11040输入信号通道抗混叠滤波器的设计难度,甚至可以完全省去抗混叠滤波器。表1列举了MAX11040的部分特性,关于MAX11040数字低通滤波器或表中列出的特性指标的详细信息,请参考器件数据资料。

表1. MAX11040 ADC的关键指标 PartChannelsInput range (VP-P)Resolution (Bits)Speed (ksps, max)SINAD (1ksps) (dB)Input impedance

MAX110404±2.22464117High, (130kΩ, approx)

电力线应用对ADC性能的要求

电力线监控应用中,CT (电流)互感器和PT (电压)互感器输出范围的典型值为:±10V或±5V峰峰值(VP-P)。而MAX11040的输入量程为±2.2VP-P,低于CT和PT互感器的典型输出。不过,可以利用一个简单的低成本方案将±5V或±10V互感器输出调整到MAX11040较低的输入量程以内,电路如图2所示。

连接到通道1的电路代表一个单端设计,这种配置下,变压器的一端接地,通过一个简单的电阻分压器和电容完成信号调理。

对于共模噪声(该噪声在ADC的两个输入端具有相同幅度)比较严重的应用场合,推荐采用图中通道4所示差分连接电路。利用MAX11040的真差分输入大大降低共模噪声的影响。

 

图2. MAX11040在电力线监控典型应用中的原理框图,图中给出了一个±10V或±5V输出的变压器接口。通道4接口电路采用差分设计,通道1采用单端设计。

 

图2. MAX11040在电力线监控典型应用中的原理框图,图中给出了一个±10V或±5V输出的变压器接口。通道4接口电路采用差分设计,通道1采用单端设计。

PT和CT测量变压器相当于低阻互感器(等效阻抗RTR通常在10Ω至100Ω量级)。为方便计算,以下示例中假设:变压器相当于一个有效输出电阻RTR = 50Ω的电压源;为便于演示,变压器可以由一个50Ω输出阻抗的低失真函数发生器代替,如图3所示。MAX11040的输入阻抗与时钟速率、ADC输入电容有关。连接适当的旁路电容C3,设定XIN时钟频率 = 24.576MHz,则得到输入阻抗RIN等于130kΩ ±15%,误差取决于内部输入电容的波动。

R1、R2组成的电阻分压网络将±10V或±5V输入信号转换成ADC要求的±2.2V满量程范围(FSR)。为确保该电路工作正常,需要优化R1和R2电阻值,以及C1、C2和C3电容的选择,以满足±10V或±5V输入的要求。电阻R1和R2必须有足够高的阻抗,避免CT和PT变压器输出过载。同时,R2阻值还要足够小,以避免影响ADC的输入阻抗(R2 << RIN)。

对于单端设计,图2中MAX11040通道1的输入电压VIN(f),可以利用式1计算:

 

式1.

(式1)

 

式中:

VTR是CT和PT变压器的输出电压。

RTR是变压器的等效阻抗。

R1、R2构成电阻分压网络。

RIN是MAX11040的输入阻抗。

R2llRIN是R2和RIN的并联阻抗。

C3为输入旁路电容。

f是输入信号频率。

VIN(f)是MAX11040的输入电压。

可以利用类似方法进行差分输入设计。

为保持高精度电阻分压比和正确的旁路特性,应选取低温度系数、精度为1%甚至更好的金属薄膜电阻。电容应选取高精度陶瓷电容或薄膜电容。最好选择信誉较好的供应商购买这些元件,例如Panasonic®、Rohm®、Vishay®、Kemet®和AVX®等。

MAX11040EVKIT提供了一个全功能、8通道DAS系统,评估板能够帮助设计人员加快产品的开发进程,例如,验证图2中所推荐的原理图方案。

 

图3. 基于MAX11040EVKIT的开发系统框图,需要两个精密仪表对测量通道进行适当校准。测量结果可以通过USB发送到PC机,然后转换成Excel®文件作进一步处理。

 

图3. 基于MAX11040EVKIT的开发系统框图,需要两个精密仪表对测量通道进行适当校准。测量结果可以通过USB发送到PC机,然后转换成Excel®文件作进一步处理。

函数发生器产生的±5V信号连接到MAX11040的通道2,而另一函数发生器产生的±10V信号连接到MAX11040的输入通道1。电阻分压网络R1/R2和R3/R4对±5V或±10V输入进行相应的调整,使其接近ADC的满量程范围(FSR = ±2.2VP-P)。

电阻分压网络R1和R2的取值以及旁路电容C1和C2的取值如表2所示,均由式1计算得到,接近最佳的输入动态范围(约±2.10VP-P)。该动态范围限制在0.05%相当高的精度范围,非常适合MAX11040。有关精度指标的详细信息,请参考MAX11040数据资料。

表2. 图3中的电阻和旁路电容计算 VTR

±VP-PRTR

(Ω)R1

(Ω)R2

(Ω)RIN

(Ω)C3

(µF)f

(Hz)VIN

±VP-PVADC

(VRMS)Calibration

factor-KCALCalibration

factor error (%)

Calculations for nominal VTR and standard components (nominal) values

105033209091300000.1502.112681.49394.733010.70

550249018201300000.1502.070261.463952.415160.99

Measured values for VTR, VIN, VINRMS with real components values and tolerances used in the experiment

9.86350 ± 10%3320 ± 1%909 ± 1%130000 ± 15%0.1 ± 10%502.098721.4838994.6999120

4.93250 ± 10%2490 ± 1%1820 ± 1%130000 ± 15%0.1 ± 10%502.061511.458332.39140

050 ± 10%2490 ± 1%1820 ± 1%130000 ± 15%0.1 ± 10%5000.00048NANA

表2列出的计算值均来自式1的计算结果和图3定义的精确测量。表格顶部给出了式1在标称输入电压下的理论计算结果,选择标准的分立元件。表2底部给出了演示系统中实际测量的元件值以及测试误差,同时还给出了用于FSR校准和计算得到的KCAL系数,计算公式如下:

校准系数KCAL按照式2计算:

KCAL = VTRMAX/(VADCMAX - VADC0)(式2)

式中:

VTRMAX是输入最大值,分别代表±5V或±10V输入信号。

VADCMAX是测量、处理后的ADC值,MAX11040评估板设置与图3相同,输入信号设置为VTRMAX。

VADC0是测量、处理后的ADC值,MAX11040评估板设置与图3相同,输入信号设置为VIN = 0 (系统零失调测量)。

KCAL (本实验中)是针对特别通道的校准系数,根据VADC计算输入信号VTR。

KCAL误差计算显示只基于标称值的KCAL“理论值”可能与基于实际测量值计算的KCAL之间存在1%左右的误差。

所以,只是依靠理论计算还不足以支持实际要求;如果设计中需要达到EU IEC 62053标准要求的0.2%精度,就必须对每个测量通道进行满量程(FSR)校准。

表3所示结果验证了½ FSR输入信号的测量。利用高精度HP3458A万用表测量数据,利用式2中的校准系数KCAL得到ADC测量值和计算值。

表3. 验证½ FSR输入信号对应的测量结果 GeneratorGeneratorMAX11040CalculationVerrRequirements

Nominal signal (½ FSR)VTR_m - signal measured by HP3458AVIN measured by ADCVTR_C = VIN × KCAL(VTR_M - VTR_C) × (100/VTR_C)IEC 62053

(VP-P)(VRMS)(VRMS)(VRMS)(%)(%)

Channel 1: ±5.0003.48920.742593.490126-0.0265440.2

Channel 2: ±2.5001.74710.73071.747384-0.0162650.2

表3中的VTR_M表示输入½ FSR信号时的测量值,而VTR_C表示基于MAX11040测量值和KCAL处理、计算得到的数值。

结果显示调理后的电路测量误差VERR低于0.03%,可轻松满足EU IEC 62053规范要求的0.2%精度指标。

 

图4. MAX11040EVKIT GUI允许用户方便地设置各种测量条件:12.8ksps、256采样点/周期和1024次转换。此外,GUI的计算部分提供了一个进行快速工程运算的便捷工具。

 

图4. MAX11040EVKIT GUI允许用户方便地设置各种测量条件:12.8ksps、256采样点/周期和1024次转换。此外,GUI的计算部分提供了一个进行快速工程运算的便捷工具。

测量结果也可以通过USB口传送到PC端,从而利用强大的(而且免费)的Excel进行详细的数据分析。

结论

MAX11040等高性能多通道同时采样、Σ-Δ ADC非常适合工业应用的数据采集系统。这些新型ADC设计能够提供高达117dB的动态范围,有效改善积分非线性和微分非线性,采样速率高达64ksps。选择适当的信号调理电路,MAX11040能够满足甚至优于高级“智能”电网监控系统的指标要求¹。

关键字:ADC  应用简介 编辑:探路者 引用地址:Σ-Δ ADC应用简介

上一篇:基于STC89C52和HT1621D的液晶显示系统的设计
下一篇:快速充放电柔性锂离子电池成果问世

推荐阅读最新更新时间:2023-10-17 15:07

奥地利微电子推出新款16通道的高速12bit ADC AS1542
AS1542适合于需要1Msps、16输入通道的最低功耗要求的通信和数据采集系统 中国 —— 奥地利微电子发布了一款具有最低功耗、卓越DC性能和突出动态指标的多通道逐次逼近型 A/D 转换器AS1542,扩展了奥地利微电子高性能 ADC 产品系列。AS1542 结合了 1Msps 高速和 16 输入通道,是光纤网络、有线和无线通信,以及其他各种形式数据采集的理想方案。 AS1542 可为每个输入通道提供 12 位的高分辨率,并采用先进的设计技术实现了高吞吐量下的极低功耗。在 1Msps 转换速度下,AS1542 的功耗低于 2.4mA,再一次证明了奥地利微电子在低功耗领域的领导地位。在自动关断模式下,工作电流可降至0
[新品]
ADI推出业界最快的18位SAR模数转换器AD7960
Analog Devices, Inc.(NASDAQ: ADI) 最近推出18位PulSAR®模数转换器AD7960,吞吐量达到5 MSPS,是现有所有SAR(逐次逼近型寄存器)转换器的两倍。凭借业界领先的吞吐量、同类最佳的本底噪声和较高的线性度,AD7960 PulSAR模数转换器设计用于低功耗信号链、多路复用系统(如数字X射线)和过采样应用(包括光谱仪、MRI梯度控制和气谱分析)。   不同于其他18位模数转换器通过牺牲功耗和精度来实现较高的采样速率,AD7960在5MSPS吞吐量下的功耗为39 mW,并且专门经过优化,可实现出色的直流线性度(+/- 0.8 LSB INL)和交流性能(99dB SNR),即使
[模拟电子]
ADI推出业界最快的18位SAR<font color='red'>模数转换器</font>AD7960
利用Σ-Δ ADC在工业多通道数据采集系统中进行信号调理
        引言   许多高端工业应用中,高性能数据采集系统(DAS)与各种传感器之间需要提供适当的接口电路。如果信号接口要求提供多通道、高精度的幅度和相位信息,这些工业应用可以充分利用MAX11040等ADC的高动态范围、同时采样以及多通道优势。本文介绍了MAX11040的Σ-Δ架构,以及如何合理选择设计架构和外部元件,以获得最佳的系统性能。    高速、Σ-Δ架构的优势   图1所示为高端三相电力线监视/测量系统,这类工业应用需要以高达117dB的动态范围、64ksps采样速率精确地进行多通道同时采集数据。为了获得最高系统精度,必须正确处理来自传感器(例如,图1中的CT、PT变压器)的信号,以满足ADC输入
[电源管理]
利用Σ-Δ <font color='red'>ADC</font>在工业多通道数据采集系统中进行信号调理
如何在MCU内完成ADC
STM32的优点在哪里?除去宣传环节,细细分析,STM32时钟不算快,72MHZ,也不能扩展大容量的RAM FLASH,同样没有DSP那样强大的指令集。它的优势在哪里呢? ---就在快速采集数据,快速处理上。 ARM的特点就是方便。 这个快速采集,高性能的ADC就是一个很好的体现,12位精度,最快1uS的转换速度,通常具备2个以上独立的ADC控制器,这意味着,STM32可以同时对多个模拟量进行快速采集,这个特性不是一般的MCU具有的。以上高性能的ADC,配合相对比较块的指令集和一些特色的算法支持,就构成了STM32在电机控制上的强大特性。 好了,正题,怎么做一个简单的ADC? 注意是简单的,ADC是个复杂的问题,涉及硬件设
[单片机]
如何在MCU内完成<font color='red'>ADC</font>?
ADC和DAC有什么区别?
不,这不是一个“愚弄人的”问题或脑筋急转弯,并且我认为我们的读者都非常清楚模数转换器(ADC)及数模转换器(DAC)的基本功能。 但在如何使用这些转换器以及人们的认知度上也存在着哲理性区别。用最简单的话讲,ADC是用来捕获大量未知的信号,并把它转换成已知的描述。相反,DAC是接受完全已知的、深刻理解的描述,然后“简单地”产生等效的模拟数值。 简而言之,DAC工作在确定的领域,而ADC则工作在随机输入信号和未知性领域,只要输入在规定的范围内。在传统的信号处理理论中,比如在Harry L.Van Trees的经典著作Detection, Estimation, and Modulation Theory中介绍的那样,信号处理面临着不
[电源管理]
1.9.6_ADC和触摸屏_ADC中断_P
在检测到触摸屏按下时进入自动测量模式,启动ADC,在ADC中断中,判断触摸屏是否按下,按下才采集AD值,然后进入等待触摸笔松开的模式。 调试发现,采集到的AD值不规律,怀疑是采集太快了,触摸笔按下到采集中间需要延时一段时间等待信号稳定,这个可以通过ADCDLY来调节。具体的延时时间最好通过示波器抓信号来确定,这里直接设为5ms,一般来说是够了。
[单片机]
1.9.6_<font color='red'>ADC</font>和触摸屏_<font color='red'>ADC</font>中断_P
德州仪器推出两款多通道16位模数转换器
2008 年 5 月 30日,德州仪器 (TI) 宣布推出 ADS1174(四通道)与 ADS1178(八通道)两款多通道16位 ∆∑ 型模数转换器 (ADC)。这两款新产品完美集成了出色的 DC 精度、卓越的 AC 性能以及低成本集成等优异特性,为电源测量、除颤器、ECG 监视器以及压力传感器、科里奥列流量计以及震荡/模式分析等要求严格的信号采集应用提供了同时采样测量系统ADS1174 与ADS1178 模数转换器不仅具有 25kHz 的带宽、2uV/C 的失调电压漂移、高达 97dB 的信噪比 (SNR),而且还支持两种操作模式,从而可实现速度优化(52kSPS) 或功耗优化。 过去,可提供出色漂移性能的
[新品]
如何在STM32中得到最佳的ADC精度
STM32家族中的所有芯片都内置了逐次逼近寄存器型ADC模块.内部大致框架如下: 每次ADC转换先进行采样保持,然后分多步执行比较输出,步数等于ADC的位数,每个ADC时钟产生一个数据位。说到这里,用过STM32 ADC的人是不是想到了参考手册中关于12位ADC转换时间的公式: ST官方就如何保障或改善ADC精度写了一篇应用笔记AN2834。该应用笔记旨在帮助用户了解ADC误差的产生以及如何提高ADC的精度。主要介绍了与ADC设计的相关内容,比如外部硬件设计参数,不同类型的ADC误差来源分析等,并提出了一些如何减小误差的设计上建议。 当我们在做STM32的ADC应用遇到转换结果不如意时,常有人提醒或建议你对采样时间或
[单片机]
如何在STM32中得到最佳的<font color='red'>ADC</font>精度
小广播
最新电源管理文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved