交叉级联正激式同步整流拓扑的功率变换结构

最新更新时间:2012-12-26来源: 电源网关键字:交叉级联  正激式  同步整流 手机看文章 扫描二维码
随时随地手机看文章

1 概述  

DC-DC变换器是开关电源的核心组成部份,常用的分为正激式和反激式两种电路拓朴。常规正激式变换器的功率处理电路只有一级,存在MOSFET功率开关电压应力大,特别是当二次侧采用自偏置同步整流方式,输入电压变化范围较宽时,存在栅极偏置电压过高,甚至有可能因栅压太高而损坏同步整流MOSFET的危险。而且当输出电流较大时,输出电感上的损耗将大大增加,严重地影响了效率的提升。使用交叉级联正激式同步整流变换电路,不但输出滤波电感线圈可省去,实现高效率、高可靠DC-DC变换器,达到最佳同步整流效果。  

2 基本技术  

2.1交叉级联正激变换原理

交叉级联变换的拓朴如图1所示,前级用于稳压,后级用于隔离的两级交叉级联的正激变换器组成的同步降压变换器。为了实现宽输入电压范围及隔离级恒定的电压输入,前后两级正激变换都应在最佳的目标下工作,从而确保由它所组成的高效率同步降压变换器能接收整个35-75V通信用输入电压范围,并将它变换为严格调整的中间25V总线电压。实际中 间总线电压由隔离级的需要预置,取决于隔离级的变比。中间电压较高时,可以采用较小的降压电感值和较低的电感电流,因而损耗也少。整个降压级的占空比保持在30^'60%,可协助平衡前后两级正激变换的损耗。为使性能最佳,并使开关损耗降至最小,开关频率的典型值为240k-300kHz;由于使用低通态电阻(RDS(on))的MOSFET,导通损耗比较小。传统的单级变换器主开关必需使用至少200V以上的MOSFET,其RDS(on)等参数显著增加,必然意味着损耗增加,效率下降。交叉级联正激变换拓扑的简化原理图如图2所示。



2.2同步整流技术  

众所周知,普通二极管的正向压降为1V,肖特基二极管的正向压降为0.5V,采用普通二极管和肖特基二极管作整流元件,大电流情况下,整流元件自身的功耗非常可观。相比之下,如果采用功率MOSFET作整流元件,则当MOSFET的栅源极施加的驱动电压超过其闽值电压,MOSFET即进入导通状态,无论从漏极到源极或从源极到漏极,均可传导电流。导通电流在MOSFET上产生的压降仅与MOSFET的沟道电阻成比例关系,n个MOSFET并联时,压降可降为单个MOSFET的1/ n。因此,理论上由整流元件压降产生的损耗可人为的降到最小。同步整流(SynchronousRectify,缩写为SR)正是利用MOSFET等有源器件的这种特性进行整流的一项技术。  

采用功率 MOSFET实施SR的主要损耗为:  

导通损耗:

 

开通损耗:

 

关断损耗:

 

驱动损耗:

 

式中 I 为 正向电流有效值,RDS(on)为通态电阻,fS为开关频率,CGSS为输入电容,Coss为输出电容,D为占空比。可见 ,正 向导通损耗与RDS(on)成正比。不同VDS的MOSFET, RDS(on)往往可相差几个数量级,所以相同电路拓扑中采用100V MOSFET的损耗比采用200VMOSFET明显要低。考虑到低VDS的MOSFET比高VDS MOSFET的Coss要小,据关断损耗式,表明低VDSMOSFET的关断损耗也小。驱动损耗式为开关过程中输入电容充放电引起的损耗,该损耗与栅一源驱动电压的平方成正比。由于采用了两级变换器,对隔离级来说,因稳压级己经将较宽的输入电压稳在固定的中间总线电压上,变压器的变比可以达到最佳。  

MOSFET的正向通态电阻RDS(on)以及输入电容是固定的,驱动损耗只与驱动电压的平方成正比关系。总之,采用两级变换器可使正向导通损耗,驱动损耗等减到最小程度。此外, 交叉级联正激变换电路拓扑中,输出级同步整流MOSFET所需电压仅为输出电压的两倍,再加上1.2倍的保险系数,器件的耐压只是输出电压的2.4倍,远小于传统单级变换器解决方案需要达到输出电压4-10倍的要求。这样采用交叉级联正激变换电路拓扑的两级变换器,便可使用低压、低RDS(on,的MOSFET来实现极低的输出级导通损耗。两级变换器还采用了并联MOSFET的输出,得到更低的RDS(on)以及更低的损耗。在系统整体设计的时候,只要元件热分布合理,装置的使用寿命和可靠性必将有极大提高。

2.3电流前馈技术

由图可见,交叉级联正激变换电路拓扑的二次侧没有输出滤波电感线圈,单级式变换器则必须有输出滤波电感线圈。单级变换器设计时必须兼顾输出滤波电感中电流的断续模式(DCM)和连续模式(CCM),电感值的选定不但理论计算复杂,而且需要实验校验。交叉级联正激变换电路拓扑中的隔离级采用电流前馈技术,输出滤波电感不需要流过全部输出电流。特别是对低压大电流输出而言,输出级不会因输出电流的增加而发生难以预料的变化,这是该电路拓朴的主要优点。因此,当系统设计需按比例变化,特别是按输出电压及输出电流变化时由于输出电流的变化在一次侧隔离级的输入电流中已有反映,亦即所谓电流前馈,这样滤波电感线圈的损耗大大降低,从而也提高了变换器的效率。

 

3 设计实例和实验结果  

应用上述设计思路,我们设计了一台用于通信设备的DC -DC半砖电源。具体技术指标如下:输入 电压DC3 5-75V:输出电压DC3 .3V/30A;输出功率100W;效率92% (TYPICA );电压调整率士0.1%;负载调整率士0.1%;隔离电压1 500V,,5;保护要求是过压、过流、过温等。  

图3所示为采用交叉级联正激变换电路设计的通信设备专用DC-DC半砖电源原理图。工作原理如下,R,, R2. D,, Q,, D:和C:组成自举启动电路,得到启动电压Vc分别给ICI,I C2和IC3供电。电路启动后,T,的辅助绕组经D3整流,C3平滑滤波后为IC提供电压VD,因VD电压高于Vc,二极管D2反偏,Q、的供电关闭,达到启动电路无功耗的目的。IC:的脚6输出方波信号,一路直接送到ICl的脚5,另一路经Q2倒相后送到IC:的脚6作为IC,的输入信号。IC,的脚3和脚8输出相位相差180“的方波脉冲信号,分别驱动MOSFETQ 31 Q 4- Q3" Q 4" L 2等组成高效率的同步降压级,降压级的占空比保持在30-60%. IC3.Qs"Q6"T.等组成交叉级联正激式隔离级,达到DC-DC最终的输出电压。马、DS为变压器T,的磁复位绕组。由于降压级已将变化范围较宽的输入电压严密调整为中间总线电压,因此隔离级不需调压。交叉级联正激变换器都工作在50%的占空比,可以采用VDS为100V的MOSFET. Q7, Q:等组成自偏置式同步整流电路,因隔离级的输出电压是固定的,所以同步整流MOSFET漏极的输入电压也是固定的,占空比也为50%,可以使用VDS很低的MOSFET(本例中采用的是VDS为12V的MOSFET,损耗最低)因功耗引起的发热问题均可以方便解决。因输入电压固定,多出电压时,能够方便地实现高电压调整率和高负载调整率,单级变换器很难做到此点。其他电路功能(如过流、过压、过温度保护等)不再一一阐述。经测量该电路的工作效率约在92%左右,达到预定的设计要求,并且调试较简单,为今后的批量生产奠定了基础。  

4 结束语  

交叉级联正激式变换器,电路组成稍微复杂,但能平坦分配各级损耗达到整体功耗最小,从而可在更高的环境温度下工作。较低的功耗,意味着更高的效率;工作环境温度高,意味着散热处理能力强和输出电流大。而可用输出电流成本的降低,预示着系统长期可靠性会更好。实践表明:交叉级联正激式同步整流拓朴确实是一种非常有前景的功率变换结构。各项指标优于相同的单级变换器。

 

关键字:交叉级联  正激式  同步整流 编辑:探路者 引用地址:交叉级联正激式同步整流拓扑的功率变换结构

上一篇:一种小体积、高可靠性的开关电源设计
下一篇:电容式电场能收集装置整流调理电路MPPT技术

推荐阅读最新更新时间:2023-10-17 15:12

反激、正激、推挽电路的自偏置同步整流电路
自驱动同步整流   这里给出反激、正激及推挽三种电路的 同步整流 电路。在正常输入电压值附近工作时,效果十分明显,在高端时,效率变坏而且容易损坏MOSFET。其电路如图1所示。输出电压小于5V时才适用。      图1. 反激、正激、推挽电路的自偏置同步整流电路
[电源管理]
反激、正激、推挽电路的自偏置<font color='red'>同步整流</font>电路
控制驱动同步整流简介
     在研究了自驱动同步整流技术之后,我们来关注控制驱动的同步整流,控制驱动的同步整流技术比自驱动通常要复杂一些。当然,控制驱动技术能克服自驱动技术的所有局限,消除体二极管导通,使用精确时间控制电路可减小反向恢复损耗,更进一步,栅驱动电压可设置在最佳电平以使RDS(ON)最小。以及将栅驱动也减至最小,栅驱动电压可由线路电压独立地调整稳定。所有这些都来自增加控制复杂程度后的成本提升。   了解了自驱动同步整流的局限,开始画出同步整流栅驱动所希望的波形,并给出可能的控制信号。图1示出两个同步整流的栅-源电压,漏-源电压。同时给出初级侧MOSFET的源漏电压及PWM IC的控制信号。   注意:PWM控制信号为初级侧为初级侧
[电源管理]
控制驱动<font color='red'>同步整流</font>简介
MAX8686电流模式同步整流PWM降压调节器
MAX8686电流模式同步整流 PWM降压调节器 内置MOSFET,工作电压范围:4.5V至20V,可产生0.7V至5.5V可调输出电压,每相可提供高达25A的电流。   MAX8686采用峰值电流检测模式,开关频率调节范围为300kHz至1MHz。可调限流门限允许针对具体应用的负载电流进行优化。可通过外部检流电阻限制电感电流或利用电感进行无损电流检测。折返式限流和打嗝式限流可降低过载或短路情况下的功耗,故障排除后可自动恢复工作。   MAX8686即使在输出存在预偏置电压时也能够实现单调启动。此外,还提供可调节的软启动,实现受控开启过程。MAX8686内置精度为1%的基准,所提供基准输入用于支持更高精度的外部基准,实
[电源管理]
MAX8686电流模式<font color='red'>同步整流</font>PWM降压调节器
适用于适配器的反激同步整流控制电路
  随着消费类电子的发展,其外部供电电源(适配器)所消耗的电能占全球能耗的比例在急剧加大,成为不可忽视的耗能“大户”。以美国为例,每年适配器需要消耗电能3000亿度/年,占整个国家每年用电总量的11%。   在节能减排深入人心的当今,目前各国政府的法规中对外部电源的要求越来越严格。美国能源之星5.0,针对外部电源的平均效率也作出了更为苛刻的规范。    表1:输出电压Vout 6V时的电源效率。   表2:输出电压Vout 6V时的电源效率。   高功率密度,高集成度毫无疑问已经成为电子技术发展的方向,电源效率的提升不仅能减小电源的体积还能大大提高电源的可靠性。   适配器作为小功率的消费品,设计成
[电源管理]
适用于适配器的反激<font color='red'>同步整流</font>控制电路
借用同步整流架构提高电源转换器效率
  随着消费性电子的发展,各种供电电源如适配器所消耗的电能占全球能耗的比例急剧加大,成为不可忽视的耗能「大户」。以美国为例,每年适配器须要消耗电能3,000亿度,占整个国家每年用电总量的11%。   现今节能减碳声浪不断提高,各国政府法规对电源的要求也越来越严格。美国能源部(Department of Energy, DoE)针对External Power Supply公告新的要求NOPR(Notice of Proposed Rulemaking),将对电源供应厂与相关节能零件带来新的挑战,表1为针对效率的要求。详细资料可参考美国能源部官方网站。    同步整流晶片加速取代二极管   手持式电子产品如平板装置(Tablet
[电源管理]
借用<font color='red'>同步整流</font>架构提高电源转换器效率
全新同步整流IC助力SMPS应用更简易、更高效
2016年7月5日,德国慕尼黑和加利福尼亚埃尔塞贡多讯 英飞凌科技股份公司(FSE: IFX / OTCQX: IFNNY)推出IR1161L 和 IR11688S 二次侧同步整流(SSR)系列控制IC,进一步完善英飞凌面向SMPS应用的产品组合。 IR1161L 和 IR11688S SSR IC符合美国能源部和《欧盟数据中心能效行为准则》(European Code of Conduct for Energy Efficiency in Data Centre)设定的2016新标准,其中,新标准要求效率较之前提升1%至3%。假设新适配器平均节能2%,仅美国成人笔记本用户每年就可节能525 GWh,这足以
[电源管理]
全新<font color='red'>同步整流</font>IC助力SMPS应用更简易、更高效
单端正激式开关电源的驱动电路的设计
一、基于TOPSwith单片机开关电源的基本原理 TOPSwitch( Three - terminal Off - line PWM Switch) 单片开关电源是美国PI ( Power Integration ) 公司于上世纪90 年代中期推出的新型高频开关电源芯片,它用了3 个管脚将脱线式开关电源所必需的具有高压N 沟道功率MOS 场效应管、电压型PWM 控制器、100 kHz 高频振荡器、高压启动偏置电路、基准电压、用于环路补偿的并联偏置调整器、误差放大器和故障保护功能块等全部集成在一起了。采用TOPSwitch 器件的开关电源与分立的MOSFET 功率开关及PWM 集成控制的开关电源相比,具有电路结构简洁、成本低廉
[电源管理]
单端<font color='red'>正激式</font>开关电源的驱动电路的设计
低压大电流直直变换器的设计
1.引言 开关电源是利用现代电力电子技术,控制开关晶体管开通和关断的时间比率,维持稳定 输出电压的一种电源。从上世纪9O年代以来开关电源相继进入各种电子、电器设备领域,计 算机、程控交换机、通讯、电子检测设备电源、控制设备电源等都已广泛地使用了开关电源。 随着电源技术的发展,低电压,大电流的开关电源因其技术含量高,应用广,越来越受到人 们重视。在开关电源中,正激式和反激式有电路拓扑结构简单,输入输出电气隔离等优点, 广泛应用于中小功率电源变换场合。与正、反激式相比,推挽式变换器变压器利用率高,输 出功率较大,而且由于使用MOS管,基本不存在励磁不平衡的现象。因此,一般认为推挽式变 换器适用于低压,大电流,功率较大的场合。
[电源管理]
小广播
最新电源管理文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved