目前,模块电源的设计日趋规范化,控制电路倾向于采用数字控制方式,非隔离式DC-DC变换器(包括VRM)比隔离式增长速度更快。随着半导体工艺和封装技术的改进,高频软开关技术的大量应用,模块电源的功率密度越做越高,模块电源的功率变换效率也越来越高,体积越来越小,出现了芯片级的模块电源。模块电源普遍用于交流设备、接入设备、挪动通讯、微波通讯以及光传输、路由器等通讯范畴和汽车电子、航空航天等。其特点是可为专用集成电路(ASIC)、数字信号处理器(DSP)、微处理器、存储器、现场可编程门阵列(FPGA)及其他数字或模拟负载提供供电。模块电源的噪声测试主要分为三点,如下:
1、测试条件:模块电源交流输入电压220V,输出满载(对于多路输出,各路均满载)
(可根据需要设定交流输入电压90V,220V,265V,满载输出条件下测试)。
2、测试方法:测试时,示波器TIME/DIV档置10uS/div,带宽置20MHz,读取示波器显示的输出电压峰-峰值即为输出纹波电压(包含毛刺在内的峰-峰值为纹波+噪音)。
1)模块电源的输入电压调整为标称电压,调整输出电流为额定电流。
2)模块电源纹波通常用峰-峰值表示。主要的测试方法。
模块电源纹波和杂音是叠加在直流输出电压上的交流成分,对纹波和噪音的测量在额定负载和常温下进行。对于开关型的AC/DC模块电源而言,输出纹波电压为一系统带有高频分量的小脉冲,因此通常测量峰-峰值,而不是有效值(RMS)。其测量值用毫伏峰-峰值(mVp-p)表示。例如当一个AC/DC模块电源的纹波峰-峰值为50mV时,其RMS值很低,仅为5mV,但是否能用于某一系统,必须要进一步考虑才行。
因为所测量的纹波中含有的高频分量,必须使用特殊的测量技术,才能获得正确的测量结果。为了测出纹波尖峰中的所有高频谐波,一般要用20MHz带宽的示波器。
其次在进行纹波测量时,必须非常注意,防止将错误信号引入测试设备中。测量时必须去掉探头地线夹,因为在一个高频辐射场中,地线夹会象一个天线一样接受噪音,干扰测量结果。用带有接地环的探头的测量方法来消除干扰。
为一种使用50Ω同轴电缆来测量模块电源输出纹波电压的方法。同轴电缆直接与示波器连结。为降低噪音,测量时应使用一个铝或铜的接地板。测量值为实际值的1/2.
为另一种采用双纹线的测量方法。
把模块电源放置在一个离接地板25mm之上的地方,接地板由铝或铜板构成。模块电源的输出公共端和AC输入地端直接与接地板连结,接地线应该很粗,而且不长于50mm.
用16AWG铜线做成300mm长的双绞线,一端接电源输出,另一端并联一只47μF的钽电容,再接到示波器上。电容的引线应尽可能短,注意极性不要接反。示波器探头的“地线”应尽可能接到地线环,示波器带宽不小于50MHz,示波器本身交流应接地。
3、输出杂音测试(选测内容,分为峰-峰值杂音,电话衡重杂音,宽频杂音,离散杂音)。
目前,国内市场运用模块电源的主要供给商为VICOR、ASTEC、LAMBDA、ERICCSON以及POWER-ONE.由于各公司生产的模块电源的类别、系列、规格品种难以数计,故其功能特性和物理特性不尽相同,因此在安装、使用与维护方面也各有不同,随着半导体工艺、封装技术和高频软开关的大量运用,模块电源功率密度越来越大,转换效率越来越高,应用也越来越简单。
关键字:模块电源 噪声测试
编辑:探路者 引用地址:模块电源的噪声测试技巧介绍
推荐阅读最新更新时间:2023-10-17 15:13
高阻器件低频噪声测试技术与应用研究--低频噪声测试技术理论(一)
1.1高阻器件的定义
电子器件或材料按其等效电阻大小可划分为:高阻器件、中阻器件、低阻器件。而上述三类器件的定义随器件或材料的应用目的和应用领域的不同而不同。 本项研究工作从噪声测试的角度来定义和划分上述三类器件。常规噪声测试方法和测试仪器能够准确测量等效阻值在50 -10 6 欧之间的器件的噪声,我们将阻值在该范围内的器件定义为中阻器件。我们根据传统噪声测试原理,改进已有噪声测试技术和测试方法还可以继续测量一些等效阻值在该范围之外的器件的噪声,这些器件被定义为低阻器件或高阻器件,其中等效阻值大致在1 -50欧之间的器件被定义为低阻器件,等效阻值大致在10 6 -10 10 欧之间的器件被定义为高阻器件。 本研究中高阻器件阻
[测试测量]
测试电源性能时一个重要指标:噪声测量
今天,我要谈谈在测试电源性能时需要考虑的另一个重要指标:噪声测量。 电源噪声从何而来? 电源噪声的生成有多种不同的来源。与任何一款放大器一样,电源也会产生各种不同类型的噪声,而开关模式设计还需要处理其发生的固有开关噪声。开关电源不但可通过设计,最大限度地降低其开关噪声,而且还可纳入输出滤波器,进一步降低该噪声。但只有经过实际测量后才能确切知道电源所产生的噪声级别。 瞬态纹波噪声 为何要测量噪声? 任何系统内的偏置电压正如我所认为的那样,可将其看作电气电路的基础。所有系统都能够与这些电源相连,而且必须解决与其相关的噪声问题。如果从电源生成(或通过)的噪声超出了电路的承受范围,系统会自动发生故障。噪声问题在于它可能不会(
[测试测量]
如何选择DC/DC模块电源
DC/DC 模块电源以其体积小巧、性能卓异、使用方便的显著特点,在通信、网络、工控、铁路、军事等领域日益得到广泛的应用。很多系统设计人员已经意识到:正确合理地选用DC/DC模块电源,可以省却电源设计、调试方面的麻烦,将主要精力集中在自己专业的领域,这样不仅可以提高整体系统的可靠性和设计水平,而且更重要的是缩短了整个产品的研发周期,为在激烈的市场竞争中领先致胜赢得了宝贵商机。那么,怎样正确合理地选用DC/DC模块电源呢,笔者将从DC/DC模块电源开发设计的角度,结合近年来鼎立信公司模块电源推广使用过程中得到的用户信息反馈,谈一谈这方面的问题,以供广大系统设计人员参考。
DC/DC模块电源的选择
选择使用DC/
[电源管理]
高阻器件低频噪声测试技术与应用研究--低频噪声测试技术理论(二)
2.1.2.2散粒噪声
在某些器件中会存在另外一种白噪声,这种白噪声不符合(2-4)式中热噪声的模型,并与器件有源区的载流子运动势垒有关,主要存在于二极管、双极晶体管、FET器件之中。由于这种噪声被扬声器放大后听上去像铅弹打到水泥上,因而被称为散粒噪声或散弹噪声(shot noise)。散粒噪声是由器件中的自由载流子穿过势垒导致的,所有穿过势垒的电子产生的电流脉冲效应在宏观上便体现为一个平均值一定的散粒噪声电流I,如下式所示:
由(2-5)式可导出散粒噪声的功率谱密度为:
(2-6)式中I是器件两端的直流电流,q为单位电荷。由此我们可以看到散粒噪声的一些特性。(2-6)式说明散粒噪声的功率谱密度与热
[测试测量]
模块电源的环境:模块电源应用
模块 电源
模块电源是可以直接安装在印刷 电路 板上使用的电源模块,它可以用于数字或模拟负载的供电应用场合。电源模块化是 开关电源 的发展趋势,其可以提高电源系统的工作可靠性、可用性、使用方便性,缩短电源的维修和维护时间,得到了越来越广泛的应用。而与模块电源相关的技术包括 集成电路 的制造、 封装 ,高频功率变换、数字化控制、全谐振高频 软开关 、同步整流、智能化控制、电磁兼容、功率因数校正、电源保护控制、 并联 均流控制、脉宽调制等技术。
随着 半导体 工艺和封装技术的改进,高频软开关技术的大量应用,模块电源的功率密度越做越高,模块电源的功率变换效率也越来越高,体积越来越小,出现了 芯
[电源管理]
机器设备噪声测试:振动法测噪声
一.引言 对机器设备噪声测量最通常的方法是用声级计进行声压级测量,然而在不少场合,这种人们十分熟悉的方法却显得无能为力。例如:在正在运行的多台机器的机房里,需要测定各台机器的噪声时;或者要在生产成品的流水线上逐台检测每台产品的噪声时,都会由于其他声源的影响以及反射声的传入使得声级计无法显示被测产品直接辐射的噪声。随着科技的发展,人们自然想到了声强法。但是目前声强法的测试仪器较贵,而且测试又较复杂,仍处于研究阶段。于是,人们对声波的测试开展了振动法的研究。希望通过测量机器表面振动量的方法来确定机器所辐射的噪声量,通常称为空气噪声的振动测试法。多年理论分析和应用研究的结果表明,这是一种十分简便而有效的方法。在十分恶劣的环境条件下,几乎
[测试测量]
模块电源的热测试步骤
以小体积著称的模块电源,正朝着低电压输入、大电流输出,以及大的功率密度方向发展。但是,高集成度、高功率密度会使得其单位体积上的温升越来越成为影响系统可靠工作、性能提升的最大障碍。统计资料表明,电子元器件温度每升高2℃,其可靠性下降10%,温升50℃时的寿命只有温升25℃时的1/6。所以热设计的目的就是要及时地排出热量,并使产品的温度处于一个合理的水平,保证元器件的热应力在最坏的环境温度条件下依然不会超出规定值。对于非常看重可靠性的模块电源来说,热处理在其设计中已经是必不可少的一环。 热量的产生 想要探讨热设计方法,首先要清楚模块电源温升是如何产生的。根据能量守恒定律,电源的输入总功率应该等于其输出的总功率,也即能量转换效率(η)恒
[电源管理]
基于双管正激的模块电源设计
高功率密度、高效率以及小外型尺寸已成为当前模块电源技术发展的关键驱动力。双管正激电路是实现这些要求的实用电路之一,被广泛应用在中、高功率电源设计中。本文简要介绍了双管正激电路的工作原理及优点,同时详细介绍了应用于双管正激电路的PWM控制器MAX5051的功能和具体的实验结果。
双管正激变换器的原理图与波形如图1所示。双管正激变换器的工作可以分为三个过程:能量转移阶段、变压器磁复位阶段和死区阶段。在能量转移阶段,原边的两个开关都导通,能量从输入端向输出端转移。在变压器磁复位阶段,原边的两个二极管都导通,使变压器绕组承受反相输入电压,从而实现变压器磁复位。当变压器完全复位后,变换器工作在死区阶段,即原边无电流、副边续流。在复位
[电源管理]