工程师分享:新型高功率LED驱动电路探索

最新更新时间:2013-01-22来源: 电子技术应用关键字:高功率  LED  驱动电路 手机看文章 扫描二维码
随时随地手机看文章

  逐渐取代传统白热灯泡与荧光灯的发光二极管(LED),具备低污染、低消费电力、高发光效率、长寿命、无水银成分等优势,它的发展动向已经成为全球关注的焦点。最近几年随着LED发光效率甚至超越传统荧光灯,一般认为未来提高照明灯具整体的综合效率越来越重要,然而实际上不论是哪种型式的LED灯驱动电路,都会有10~20%左右的消费电力损失,因此改善电源的转换效率,再度成为重要课题。


  以往使用AC100V平顺化后的DC140V电源方式,极容易发生突波电流。所谓「突波电流」突波电流是指开启电源后,流入平顺化电容器的巨大充电电流。具有平顺化电容器、可以驱动复数个LED的驱动电路,点灯时可能会造成断电器跳脱,此外电源切换器高温融溶附着,以及对电路组件的过负载,都可能引发各种问题。虽然突波电流抑制电路已经实用化,不过它的电源转换效率却很低,因此研究人员使用半导体继电器(Photo MOS Relay),开发LED灯专用的驱动电路,实现LED驱动电路高效率化的目的。

  根据实验结果证实90~110V变动的电源电压,电源转换效率高达80.7~91.8%,而且还能够降低突波电流。新型LED灯专用驱动电路,充分发挥2个半导体继电器特性,它具有高效率、低消费电力、低组件数量、低产业废弃物与低制作成本等特征。照明灯具即使提高1%的动作效率,对二氧化碳排放量的抑制、或是减缓地球暖化都有重大贡献,因此LED灯专用的驱动电路的发展,已经受到业者高度重视。接着本文要探讨使用半导体继电器突波电流抑制电路的新型LED灯驱动电路动作原理与特征。

  LED驱动电路

  图1是新型LED灯专用驱动电路。考虑照明灯具整体效率时,电源效率与LED发光效率同样重要。基本上LED的顺向电压只有数V非常低,因此LED灯可以使用各种方法,转换AC100~110V电源驱动LED,然而LED灯专用驱动电路本身,就有各式各样的特性与问题,接着根据电源效率的观点,透过各种驱动电路的比较,深入探讨各种驱动方式的特征。 

   驱动方式 

  驱动方式主要分成三大类,分别是:(1)降压、分压方式;(2)直接使用AC100~110V方式;(3)使用DC140V方式。

      有关第(1)项降压、分压方式,本质上LED的顺向电压非常低,因此可以使用变压器降压,或是使用平顺化电容器降压,类似这样降压、分压方式,主要缺点是损失非常大,经常高达10~20%。此外LED高辉度化时,必须提高输出、增加电流,然而电流稳定化却需要使用电流稳定化控制电路,其结果反而造成组件使用数量、制作成本有增加之虞。

  有关第(2)项,直接使用AC100~110V方式施加至LED灯群,由于这种方式没有任电力何损失,因此它的电源效率几乎是100%,目前所有交流驱动LED灯都采用这种方式。动作时它是直接对LED灯施加半波或是全波波形,由于这种方式并没有平顺化电路,因此辉度会急遽降低,严重时会出现闪烁现象,此外LED的使用数量高达2倍,即使如此下列驱动方式同样会使全光束降低。

  有关第(3)项使用非降压DC方式,由于这种方式的AC100~110V未作降压、分压,直接进行全波整流、平顺化取得DC140V的电源,因此电源效率非常高,可以施加到LED灯群的电压也超过100V。非降压DC方式通常是串联连接LED,它可以获得非常明亮的照明,不过这种方式使用大静电容量的平顺化电容器,因此会有许多突发电流流动。

  驱动方式的比较

  表1为上述驱动方式的比较结果一览。 

  突波电流抑制电路

  表1中的非降压DC型驱动方式,主要缺点会有突波电流的困扰。如上所述所谓「突波电流」是指开启电源后,流入平顺化电容器的巨大充电电流。突波电流经常成为断电器跳脱、或是对电路组件造成过负载的主要原因,如图2所示为抑制突波电流,类似电阻串联连接至平顺化电容器等方法都非常有效,然而突波电流是过渡期间发生的现象,过渡期间以外的恒定状态,抑制突波电流的电阻,反而会引发不必要的电力损失。为削减恒定状态时的额外电力损失,以往大多使用热敏型(Thermist)或是闸流体型(Thyristor)构成的电流抑制电路,不过这类电路却成为提升电源效率的主要障碍。 

  突波电流抑制电路的必要性 

  电荷未滞留在平顺化电容器时,切换器一旦变成ON,为了滞留电荷会有很大的突波电流流动,反过来说无突波电流抑制电路的场合,理论上该值会变成无限大。新开发的电路会先使电源电压以DC140V流入LED,接着再使用220μF使平顺化电容器,能够以最大电流155mA动作。 
 
  图3是测试突波电流的实验电路,根据测试结果显示突波电流的最大值为36A。为测试电流本电路刻意附加1Ω的电阻,不过实际上却是0Ω,换句话说可能有更多的电流流动,类似这样过大电流流动会引发上述弊害,因此必须设置突波电流抑制电路。 

  各种突波电流抑制电路

  传统突波电流抑制电路大多使用热敏型、闸流体型,或是半导体继电器型,新开发的LED灯专用驱动电路,则改用半导体继电型突发电流抑制电路。接着介绍各种突波电流抑制电路的特征。
 
  热敏型

  使用热敏型主要目的是取代突波电流抑制用电阻,所谓「热敏型」是指连接热敏电阻的方法。图4是热敏阻型抑制突波电流控制电路图,动作原理突波电流造成温度上升的同时,电阻热敏的阻抗值会自动下降,如此就可以减少恒定状态时的电力损失。不过这种方式切断电源立即再开启时,热敏电阻的温度受到预热影响,会持续维持上升状态,因此同样有发生大突波电流之虞。 

  闸流体型

      闸流体型是将闸流体与突波电流抑制用电阻并联设置,恒定状态时使闸流体变成ON状态,在此同时使突发电流抑制用电阻旁通,藉此削减电力损失。图5是闸流体型抑制突发电流控制电路图,本电路为了使闸流体ON、OFF,必须使用控制电路与控制电路用电源。虽然这种方式可以削减突波电流抑制用电阻的电力损失,不过突波电流控制电路还本身会是会消费电力,因此效率实际上并不如预期理想,此外随着组件使用数量增加,电路封装面积与制作成本同样有上升之虞。 

  半导体继电器型

  图6是新开发的半导体继电器型抑制突波电流控制电路图,本电路使用半导体继电器旁通突波电流抑制用电阻。半导体继电器的消费电力很小,恒定状态时的损失非常微量,若与LED灯单元并联设置半导体继电器的输入端,就可以省略上述闸流体型的突波电流抑制电路用电源与控制电路,有效减少恒定状态时的电力损失。此外半导体继电器的输入端与输出端呈电气性绝缘,因此电路设计很容易、电路结构非常简易,而且可以有效抑制电路封装面积的增加。表2是以上三种突波电流控制电路的比较一览。 

  动作特征

  如图1所示新型LED灯专用驱动电路是由下列单元构成,分别是:电源单元、定电流电路单元、定电流电路单元、LED灯单元。电源单元如上所述,首先将AC100V作全波整流,接着进行平顺化就能获得DC140V,不过考虑AC100V±10V的变动,因此实际上会变成DC140V±10V。接着介绍:定电流电路的动作原理、突发电流抑制电路的动作原理、电源效率、启动时间。 

  定电流电路的动作原理

  图7的定电流电路是图1中LED稳定驱动的定电流电路单元实际电路图,本电路使用齐纳二极管制作定电压,接着将定电压施加至FET的VGS使定电流流动。此外本电路还利用定电流二极管,提供齐纳二极管定电流制作更稳定的电压,图中的R是电流检测用电阻,当FET过热电流IF增加时,它能够发挥降低VGS、抑制电流IF,提高对热的稳定性。R是可变电阻,改变阻抗值可以进行电流的微调,观察实际电路动作时,可以发现定电流电路单元的动作电压VCRC大约是3.9V左右。

  突发电流抑制电路的动作原理 

  图8是图1中的突波电流抑制电路单元实际电路图,本电路使用半导体继电器使抑制突波电流的电阻RS0旁通。启动电源时利用RS0减轻突波电流,恒定状态时则利用半导体继电器旁通,藉此削减不必要的消费电力。此外半导体继电器的输入端并连连接在平顺化电容器,以VC为基准微调切换Rspin1与Rspin2。 

  图9是抑制突波电流时IS的电流波形;图10是抑制突波电流时VS、VC的电压波形,如图所示在本电路流动的电流IS,不论有无半导体继电器都呈一定状态,一般认为主要原因是VS的电压差,相对变更电力差所造成。换句话说,只要赋予半导体继电器动作顺序,就能够使VS变小同时削减电力,如果半导体继电器只有一个,VS的合成阻抗与电力都会增加,此时为抑制电力消费,理论上只要降低RS1即可,不过突波电流会增加,为同时兼顾这两个条件,最后决定使用2个半导体继电器。

  接着计算RS0、RS1、RS2各电阻值。此处假设此时电荷未滞留在平顺化电容器,亦即VC=0V、VS=140V,突波电流最大值为1A。首先计算RS0值:RS0=VS/突波电流最大值=140V/1A=140Ω。

  为避免突波电流超过1A,刻意使RS0具备一定裕度,因此将RS0设定成150Ω,此时恒定状态的VC实测值为120V,VS的最大值变成140V-120V=20V。虽然RS0与RS1的合成阻抗变成(RS0/RS1)=20V/1A=20Ω,不过基于安全考虑,同样使最大电流具备一定裕度,因此将RS0/RS1设定成30Ω,如此一来:RS1=1/(1/30-1/150)=37.5Ω。

  最后决定将RS1设定成38Ω。RS0与RS1分别设定成150Ω、38Ω时,恒定状态的VC实测值为130V,VS的最大值变成140V-130V=10V。RS0、RS1、RS2的合成阻抗变成(RS0/RS1/RS2)=10V/1A=10Ω,基于安全考虑,刻意使最大电流备1.5倍的裕度,因此RS0/RS1/RS2设定成10Ω×1.5=15Ω,RS2=1/(1/145-1/30)=30Ω,RS2设定成30Ω。

  电源效率 

  所谓电源效率是指所有LED的消费电力。根据实验结果显示新型LED灯驱动电路电源电压,在90~110V范围变动时,能够获得80.7~91.8%的电源效率。图11是实验模块实际外观;表3是驱动电路的输入电压、输入电力(交流)特性、输出电压、输出电力(直流)特性、照度特性、全光束特性的测试结果。其中输出电力是根据“输出电压×输出电流”算出;电源效率是根据“输出电力∕输入电力”算出。 

        图12~14分别是输入电压变动时的输出与输入端的消费电力、电源效率、全光束、照度特性的测试结果。如图12所示输出电力呈现饱和状态,主要原因是定电流电路发生作用,防止大量电流在LED内部流动所致。输入电压若超越额定值越多,在定电流电路单元电压下降相对越大,如图13所示此时电源效率越差,反过来说输入电压越低,电源效率越高。 

  如图13、图14所示输入电压越低,照度与全光束随着降低,此处刻意减少LED的颗数,输出电力的饱和领域,从输入电压90V处开始设定,此时随着电压变动全光束的变化会减少,不过电源效率在全领域却相对变少,虽然增加LED的颗数,整体的电源效率会提高,然而随着电压变动,全光束的变化却非常明显。研究人员认为两者的妥协点与实际上以100V动作的机率很高,因此最后选择能够从100V附近进入输出电力饱和领域的条件进行实验。

  启动时间 

  新型LED灯驱动电路,从开启电源一直到LED点灯为止,有所谓的时间间隔(Time lag),主要原因是开启电源时,受到生突波电流抑制电阻的影响,造成平顺化电容器C充电时必须花费相当时间,电流流到LED时出现延迟现象。由此可知启LED的动时间,基本上取决于平顺化电容器与突波电流抑制电阻构成的RC电路时定数。

  此外新型LED灯驱动电路使用交流电进行全波整流充电,因此实际启动时间比直流电更迟缓。如图10所示,新型LED灯驱动电路的启动时间低于0.2,传统荧光灯的启动时间大约2~3秒,相较之下前者的启动时间非常快,几乎无法察觉新型LED灯驱动电路的启动时间延迟。

  结语 

  半导体继电型突波电流抑制电路构成的新型高功率LED灯驱动电路,可以有效削减不必要的电力消费,90~110V的电源电压,10~20W的输出电力,电源效率高达80.7~91.7%,而且还可以降低突波电流,点灯时的电流降至1A以下,因此断电器完全没有跳脱之虞。一般认为今后照明用LED,可望朝复数LED封装化、高发光效率方向发展,届时LED顺向电压变高后,未作降压、分压直接使用DC140V的高功率LED灯驱动电路势必受到重视。

关键字:高功率  LED  驱动电路 编辑:探路者 引用地址:工程师分享:新型高功率LED驱动电路探索

上一篇:分解LED显示屏驱动 IC D5026A的节能原理
下一篇:LED驱动电源性能设计要求

推荐阅读最新更新时间:2023-10-17 15:13

LED点阵的横向移动
上下移动我们会了,那我们还想左右移动该如何操作呢? 方法一、最简单,就是把板子侧过来放,纵向取模就可以完成。 这里大家是不是有种头顶冒汗的感觉?我们要做好技术,但是不能沉溺于技术。技术是我们的工具,我们在做开发的时候除了用好这个工具外,也得多拓展自己解决问题的思路,要慢慢培养自己的多角度思维方式。 那把板子正过来,左右移动就完不成了吗?当然不是。大家慢慢的学多了就会培养了一种感觉,就是一旦硬件设计好了,我们要完成一种功能,大脑就可以直接思考出来能否完成这个功能,这个在我们进行电路设计的时候最为重要。我们在开发产品的时候,首先是设计电路,设计电路的时候,工程师就要在大脑中通过思维来验证板子硬件和程序能否完成我们想要的功能,一旦硬件做
[单片机]
<font color='red'>LED</font>点阵的横向移动
LED照明调光装置设计与实现
  随着发光二极管技术的发展,LED 照明由于其长寿命,低功耗及色彩可控等方面的优势,使其在景观照明、牌匾照明以及大屏幕显示器等方面显示出越来越广泛的应用前景和发展潜力,本文介绍一种LED 照明驱动装置,能够方便地控制LED 的光强和色彩,可通过编程对多个LED 图案进行控制,并且本系统可通过串行口与计算机进行通信,显示上位机所传送的信息。   1 LED 调光原理   目前实现LED 照明有三种主流技术路线, (1)基于三基色原理,利用红、绿、蓝三基色LED 合成白光,(2) 利用紫外LED 激发三基色荧光粉,由荧光粉发出的合成白光,(3) 采用蓝光LED 激发黄光荧光粉实现二元混色白光。相比之下,采用三基色LED 混
[电源管理]
利用MAX44000与MAX4729提高LED功率
  为了实现与MAX44000的最佳组合,增加了一级电路。模拟开关将设置电压送至运放电流驱动器。常闭输入连接至地,常开输入连接至相应电压。通过将上拉电阻连接至控制引脚,就有可能将模拟开关从NC输入切换至NO输入。      图3. 利用电流调节电路提高LED功率   该方法仅仅是提高发射器输出功率的方式之一,也可使用其它类似的Maxim器件。其它方法包括在DRV上使用上拉,向控制器发送电压信号,该信号将DAC输出在0V和所需电流对应的电压之间切换。
[电源管理]
利用MAX44000与MAX4729提高<font color='red'>LED</font>功率
LTM8042/LTM8042-1 开关稳压器LED驱动器
凌力尔特公司 (Linear Technology Corporation) 推出 DC/DC 微型模块 (uModule®) LED 驱动器 LTM8042 和 LTM8042-1,这两款器件面向由多达 8 个白光 LED 或 9 个红光 LED 组成的 LED 串。每款器件都能在 3V 至 30V 的输入电压范围内以升压、降压或降压-升压模式工作,采用 9mm x 15mm x 2.8mm LGA (盘网格阵列) 封装,是完整的 LED 驱动器解决方案。LTM8042 和 LTM8042-1 拥有 0.5% 的输出电流电压调节准确度,并能承受高达 40V 的输入瞬态电压。LTM8042 提供高达 1A 的电流,而 LTM80
[电源管理]
一款带PFC的初级端调节反激式LED驱动
  消费 电子 市场(特别是LED驱动市场)最近几年发展迅速。这些市场需要功耗低、尺寸小且成本超低的电源/驱动。另外,由于对电能质量要求不断提高,在这些设备上使用功率因数校正(PFC)电路几乎是必须的。今天,在多种不同电路中,反激因为简单而成为对这些应用最具吸引力的拓扑。它使用一个开关提供绝缘、启动以及各种其他保护。在非连续导通模式下工作时,通过简单的恒定导通时间控制,可使功率因数为1。   传统上,用于LED的恒流LED驱动使用隔离反激式转换器实施,该转换器具有输出电流调节电路,如图1所示。实际LED电流使用感测电阻测量,然后与与参考电压进行比较,生成误差电压。误差电压通过光电耦合器传输到初级端,并用于控制初级端开关器件的占空比
[电源管理]
一款带PFC的初级端调节反激式<font color='red'>LED</font>驱动
LED灯具“照明应用”的三大发展阶段
  早前LED灯具开始在发达国家进入主照明普及。市场对 LED灯具产品有了一定的认可和接受。LED灯具的环保,体积小,高可靠性等其他特性逐渐凸显出来。在电费较高,使用时间较长的商业应用场所,LED灯具迅速成为市场的新宠。作为LED照明灯具的用途,LED市场发展分几个阶段。   LED灯具实用性   在上一阶段的基础上,市场对LED灯具产品有了一定的认可和接受。LED灯具的环保,体积小,高可靠性等其他特性逐渐凸显出来。由此而开发的一系列完全有别于传统光源应用的产品会大行其道。照明行业会出现更大更广的一个发展空间。光源不再是仅仅起到照明作用,它的多变使得更贴切人们工作生活中的点点滴滴。各厂商拼的是设计应用优势。
[电源管理]
一种连接传感器的智能LED方案
  智能照明的概念崛起,让LED照明灯更受宠。智能照明系统的基本原理是用户对终端模块(包括移动终端)下指令,通过电子感应将信号传递给控制中心软件,借助控制器调节电路的电压和电流幅度,从而对光源强度、色彩等进行调控。整个系统可分为智能照明控制系统、数字可寻址LED驱动、灯具和光源几项产品。   一个典型的智能照明系统是完成从数据指令从输入端到输出端的传递。用户可以通过多种输入方式(控制软件、传感器、智能插座等)将数据传输到主控制器(网关),之后由主控制器通过ZigBee等网络协议实现对输出端(LED筒灯、LED面板灯)的控制。   LED照明灯具与传统的照明灯具最大的区别,LED照明灯具是一个完全的电子产品,而传统的照明
[电源管理]
8位LED显示40NHz频率计芯片NB8216D
概述 频率测量是电子仪器仪表行业中的一个基本测量项目,广泛用于计量、科研、教学、航空航天、工业控制、军事等诸多领域。 NB8216D是宁波甬芯微电子公司( WWW.nbic.com.cn )针对国外现有的同类频率测量芯片(例如ICM7216D等)存在的几方面缺点(直接测量频率低、工作电压范围窄、整体功耗大、显示驱动能力弱),以高速、低压、低功耗、增强驱动为研究出发点,在保证高精度、高分辨率、高稳定性等良好性能的基础上,对芯片设计和制造工艺进行创新和全过程优化。其总体性能超过国外同类心芯片,最高测量频率是同类芯片的4倍,达40MHz,可减少分频级数,简化整机设计:工作电压范围拓宽到2~5V,可用于手持式设计;静态功耗大幅
[测试测量]
小广播
最新电源管理文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved