医疗电源中的电容选择方法

最新更新时间:2013-01-25来源: 电子发烧友关键字:医疗电源  电容 手机看文章 扫描二维码
随时随地手机看文章

  开关电源用于对这些电源进行控制,由于具有显著优点,开关电源已成为大部分电子产品的标准电源。电容可用来减少纹波并吸收开关稳压器产生的噪声,它还可以用于后级稳压,提高设备的稳定性和瞬态响应能力。电源输出中不应出现任何纹波噪声或残留抖动。这些电路常采用钽电容来降低纹波,但钽电容有可能受到开关稳压器的噪声影响而产生不安全的瞬变现象。

  为保证可靠工作,必须降低钽电容的额定电压。例如,额定值为10uF/35V的D型钽电容,工作电压应降低到17V,如果用在电源输入端过滤纹波,额定35V钽电容可在高达17V的电压导轨上可靠地工作。

  高压电源总线系统一般很难达到额定电压降低50%的指标。这种情况限制了钽电容用于电压导轨大于28V的应用。目前,由于钽电容需要被降额使用,高压滤波应用唯一可行的办法是采用体积较大且带引线的电解电容,而不是钽电容。

  新型钽电容

  为解决降低额定电压的问题,Vishay研发部门开发出了具有更高额定电压等级的新系列SMD固体钽电容器,额定电压高达75WVDC.50V额定电压电容在28V以及更高电压导轨中的应用引起了设计人员的担心,而采用Vishay新型的63V和75V钽电容,可达到额定电压降低50%的行业认可安全指标。电介质成形更薄、更一致,使SMD固体钽电容的额定电压能够达到75V,从而实现了提高额定电压的技术突破。成形工艺中对多道工序进行了改进:降低了成形加工过程中产生的机械应力集中,降低了电容成形过程中电解液的局部过热,提高了电介质成形过程中电解液浓度和纯度的一致性。新型电容T97系列的额定电压达75V,83系列达63V.

  无线感应耦合充电

  大量的感应充电器采用返驰式转换器。感应充电为医疗设备电池提供充电电能,同时,感应充电器也被用于大量的便携式设备(如牙刷)中。

  缩小充电电池尺寸有助于减小采用无线感应充电电路的植入式医疗设备的体积。无线感应充电器可为设备上安装的微小薄膜(如Cymbet EnerChip)充电式储能器件安全地充电。感应充电器采用了并联LC(电感、电容)谐振储能电路的工作原理。图1所示为Cymbet公司的CBC- EVAL-11 RF感应充电器评估套件。

  Vishay 595D系列1000uF钽电容被用作Cymbet接收电路板的C5电容,为无线电发射等负载提供脉冲电流。此款感应充电器的输入与输出之间具有良好的隔离,这是医用设备的重要要求。

  在一些电压较高的感应充电器应用中,需要采用高压稳定的电容作为谐振电容。由于感应充电器的初级线圈需要采用交流电压驱动,因此必须对电容进行相应的调整。感应充电器需要具备高击穿电压(VBD)性能,同时,某些应用中还需要防护高压电弧放电。为避免电弧放电,电路板一般敷有保护涂层,或者通过合理安排元器件布局达到高压侧与电路板其他部分隔离的效果,等。但这种方法往往需要很大的电路板空间,因为高压电路通常采用体积较大的引线型通孔插装电容。

  高压电弧防护电容解决方案

  为解决这一问题,Vishay推出了一系列的HVArc(高压电弧)防护MLCC(多层贴片陶瓷电容),可防止电弧放电,同时节省空间。这些新器件在较高的电压定额内具有最大容量,并且提高了电压击穿的耐受能力。高压电弧放电会造成断路,并有可能损坏其他元器件。标准的高压SMD电容最终将会失效短路,这取决于电弧放电的次数和存在问题的部分。Vishay HVArc防护电容可以吸收所有的能量,因此,此电容能够在高压下进行正常工作,至少在达到高压击穿极限之前,不会产生破坏性电弧放电。

  HVArc防护电容的VBD分布由器件采用的独特设计来控制,VBD可达3kV或以上。本产品采用了NPO和X7R电介质。

  用于MRI的新型无磁电容

  磁共振成像(MRI)设备内部或周边电路中所使用的电容及其他电子元器件需要屏蔽或封装在MRI室外。电容的电介质、电极材料或端接材料中可能含有铁质或磁性材料。为提高图像分辨率,MRI系统的磁场水平不断提高,而MRI室内使用的电容会造成磁场畸变。因此,需要减少或完全消除大部分电容中的磁性材料。

  最新推出的系列MLCC在电极和端接结构中采用非铁材料,来满足消除磁化的要求。无磁结构可以采用X7R和NPO电介质。外形尺寸为0402至1812,符合EIA规格。Vishay还在最终测试时采用了专用电容分选设备,以确保所有无磁电容均能符合技术要求。

关键字:医疗电源  电容 编辑:探路者 引用地址:医疗电源中的电容选择方法

上一篇:恩智浦推出针对热插拔应用的新一代功率MOSFET
下一篇:TDK开发出支持车载的高可靠性陶瓷电容器

推荐阅读最新更新时间:2023-10-17 15:14

晶振电路中C1,C2电容的选择问题
(1):因为每一种晶振都有各自的特性,所以最好按制造厂商所提供的数值选择外部元器件。   (2):在许可范围内,C1,C2值越低越好。C值偏大虽有利于振荡器的稳定,但将会增加起振时间。   (3):应使C2值大于C1值,这样可使上电时,加快晶振起振。   在石英晶体谐振器和陶瓷谐振器的应用中,需要注意负载电容的选择。不同厂家生产的石英晶体谐振器和陶瓷谐振器的特性和品质都存在较大差异,在选用时,要了解该型号振荡器的关键指标,如等效电阻,厂家建议负载电容,频率偏差等。在实际电路中,也可以通过示波器观察振荡波形来判断振荡器是否工作在最佳状态。示波器在观察振荡波形时,观察OSCO管脚(Oscillator output)
[模拟电子]
数字万用表测量电容的四个小方法
数字万用表可以测量电容吗在家电维修过程中,因电容漏电或容量变化而引发的故障可谓屡见不鲜且故障现象各异。一般的指针万用表和部分数字万用表都无法测量电容,特别是那些小电容,给维修造成很大的不便。在此,我给大家介绍几种小容量电容的测量方法,供参考。 数字万用表测量电容方法l:找一个β≥250的晶体三极管(要求穿透电流要小),如一时找不到,可用两只同型号的三极管复合成达林顿形式将被测电容并接在三极管的c-e结(若为有极性电容则电容正极接三极管c极),然后用万用表R×10k挡,黑表笔接c极,红笔接e极,观察表针瞬时摆动程度。照此法用几个已知容量的正常(高精确度)的电容反复测试,记录下表针每次的瞬时最大摆动幅值,l进行处理计算,算出表盘上
[测试测量]
用万用表测电容的方法
在过程中,因漏电或容量变化而引发的故障可谓屡见不鲜且故障现象各异。一般的指针和部分数字万用表都无法测量电容,特别是那些小电容,给维修造成很大的不便。在此,我给大家介绍几种小容量电容的测量方法,供参考。方法l:找一个β≥250的晶体(要求穿透电流要小),如一时找不到,可用两只同型号的三极管复合成达林顿形式,见图1。将被测电容并接在三极管的c-e结(若为有极性电容则电容正极接三极管c极),然后用万用表r×10k挡,黑表笔接c极,红笔接e极,见图2,观察表针瞬时摆动程度。照此法用几个已知容量的正常(高精确度)的电容反复测试,记录下表针每次的瞬时最大摆动幅值,l进行处理计算,算出表盘上每小格应代表的电容值,备日后参考之用。对电容进行测量时
[测试测量]
用万用表测<font color='red'>电容</font>的方法
超级电容
超级电容器是指介于传统电容器和充电电池之间的一种新型储能装置,它既具有 电容器 快速充放电的特性,同时又具有电池的储能特性。 原理 超级电容器是通过电极与电解质之间形成的界面双层来存储能量的新型元器件。当电极与电解液接触时,由于库仑力、分子间力及原子间力的作用,使固液界面出现稳定和符号相反的双层电荷,称其为界面双层。把双电层 超级电容 看成是悬在电解质中的2个非活性多孔板,电压加载到2个板上。加在正极板上的电势吸引电解质中的 负离子 ,负极板吸引正离子,从而在两电极的表面形成了一个双电层电容器。 双电层电容器 根据电极材料的不同,可以分为碳电极双层超级电容器、金属氧化物电极超级电容器和有机聚合物电极超级电容器。
[模拟电子]
在高压电容器装置设计选型中要关注的问题
随着装置的设计制造和安装调试的专业化和规范化的进展,不仅加快了装置工程的建设 速度,而且促进了装置品质的提高与改善,这无疑是装置技术发展进步的表现。然而这并不 意味着装置工程的设计选型只要套用生产厂家的产品样本,设计单位仍然担负着不可或缺的 主导设计的责任与任务,装置的设计选型还涉及到对生产厂家的设计与生产能力及其产品质 量的鉴别把关。 本文着重研讨在装置设计选型中应引为关注的问题。诸如,装置质量应符合的技术标准、 供需方互动进行技术创新、成套装置应坚持配套器件的优化组合、积极推进装置结构工艺改 革与规模生产的进程,等等问题。 装置设计选型的依据标准 为了使装置工程通过设计与选型真正达到安全可靠、技术先进与经济合理的综合目标要 求
[电源管理]
电容式触摸屏设计难点及注意事项
对触摸屏性能影响最为深远的技术改变要算是从电阻式转移至 电容式触摸屏 技术。根据市调机构iSuppli预测,到2011年前,近25%的触摸屏手机将由电阻式转移至电容式触摸屏。电容式触摸屏技术带来的各种效益,将促使市场快速成长。 传统的电阻式触控面板在感测到手指或触控笔时,顶层柔性透明材料被下压,接触到下方的导电材料层;而投射式电容屏没有可移动部件。事实上,投射式电容感测硬件包含玻璃材质的顶层,之后是X与Y轴的组件,以及覆盖在玻璃基板上的氧化铟锡(ITO)绝缘层。部分传感器供货商会做一颗单层传感器,内嵌X与Y轴传感器和小型桥接组件于一单层ITO之中,当手指或其它导电物体靠近屏幕时,就会在传感器与手指之间产生一个电容。相对于系统而言,
[电源管理]
<font color='red'>电容</font>式触摸屏设计难点及注意事项
用于电动车高压滤波电路的小型化电容
当今社会追求更优的经济发展模式以及更低的二氧化碳排放量,这一动因促使 汽车电子 市场朝着与以往发展轨迹完全不同的路径前行。过去的几十年当中,汽车系统的电气负载已从简单的照明和充电进化为涵盖引擎管理及控制、 传感器 及安全,当然也包括娱乐功能,这使得汽车更为智能化也更加复杂。 伴随这一趋势,我们看到在高强度照明、安全系统、传动与控制和动力系统方面应用了更多的 电子 设备,以便获取更佳的驱动效果。在传动系统方面使用电气负载取代传统的机械和液压负载,这一举措提高了工作效率,从而使得业界更为关注 电动汽车 概念——混合动力车(HEV)和纯电动车(EV)。 然而对电动汽车的更多需要和需求,也给传统的12V电源系统带来了更多的挑
[嵌入式]
奇怪,陶瓷电容为什么发出“尖叫”?
随着科技的发展,电子产品已成为人们日常生活不离手的物品了。别的不说,手机可是很重要的,聊天看电视视频打电话打游戏网购支付等功能都集中在一个小小的手机上。就这么一个小小的手机是许多不同的电子元件组成的。其中也包括了今天的主角:陶瓷电容。 一、什么是陶瓷电容? 陶瓷电容 (ceramic capacitor;ceramic condenser) 就是用高介电常数的陶瓷作为电介质,在陶瓷基体两面喷涂银层,然后经高温烧成银质薄膜作为电极,在电极上焊上引出线,外表涂保护磁漆或用环氧树脂包封而制成。它的外形以片式居多,也有管形、圆形等形状。 用于电子领域的陶瓷电容具有小型化、高耐压、频率特性好等优点,随着科技技术的发展和进步,陶瓷电容
[嵌入式]
奇怪,陶瓷<font color='red'>电容</font>为什么发出“尖叫”?
小广播
最新电源管理文章
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved