新型的充电解决方案提高锂离子电池安全性

最新更新时间:2013-01-27来源: 与非网关键字:锂离子  电池安全性 手机看文章 扫描二维码
随时随地手机看文章

锂离子电池以其能量密度高、体积小、重量轻等优点,在手机、笔记本电脑市场已经完全取代其他电池,占有率几乎达到了100%。目前,锂电池正迅速延伸至电动工具及其他的应用中,它广阔的市场前景也越来越得到业界的认同。不过,与镍氢、镍镉、铅酸电池相比,要更快地推动锂离子电池的应用和发展,还必须不断提高它的安全性和使用寿命。本文将从充电器角度,讨论一种新型的充电解决方案以提高锂电池的安全性,延长电池使用寿命,同时降低充电器的成本。  
 

在使用电池的过程中,我们常会听到电池业者这样的一句话:“电池使用中坏的少,更多的是被充坏的”。这句话我们可以理解为,不正确的充电条件或方法将更容易损害电池、降低电池的寿命。以18650钴酸锂离子电池为例,当充电过温,在70℃左右:电解质界面(SEI)模开始分解并发热;120℃左右:电解质、正极开始热分解,造成析气并使温度迅速上升;在到260℃左右:电池爆炸。或充电过压,以过压5.5V来看,容易使锂金属析出,溶剂被氧化,温度上升,产生恶性循环,甚至电池着火、爆炸。因此,针对如何充电,我们共同来探讨下面几个重要的问题。  
 

为什么需要预充功能?  
 
电池工作电压从2.5V(碳负极电池:3V,电量为0%)到4.2V(电量为100%)。当电压小于2.5V时,电池放电终止。同时因为放电回路关闭使内部保护电路的电流损耗也降为最低。当然,实际应用中由于不同的内部材质,放电终止电压可在2.5V-3.0V范围。当电压超过4.2V时,充电回路终止,以保护电池安全;而当单体电池工作电压降到3.0V以下,我们即可认为过放电状态,放电回路终止,以保护电池安全。所以电池不用时,应将电池充电20%的电量,再进行防潮保存。  

由于锂离子电池具有较高的能量比,因此在电池使用中要严格避免过充,过放的现象。过放会导致活性物质的恢复困难,此时如果直接进入快速冲电模式 (大电流),会对电池产生损害,影响使用寿命并可能因此带来安全隐患。先以小电流(C/10)充到2.5V至3.0V,再转换成快充是必要的。
 

虽然目前锂离子电池在应用中都带有保护板,在通常的情况下,发生过放的几率会很小,但不加预充功能,在这两种情况下的情况还是可能带来过放的隐患。一是保护板失效,二是长时间放置(5%-10%/月)的自放电率。因此小电流预充可以有效解决过放电池的充电问题。 
 

但是,充电电流并非越大越好。以单体锂离子电池为例,它的充电方式都包括恒流、恒压充电过程,恒压通常为4.2V(以LiCoO2电池为例),恒流设置值为0.1C~1C。虽然大电流的充电会缩短充电时间,但也会造成电池生命周期的缩短和容量的降低,因此我们需选择恰当的恒流值进行充电。
 

下面是一个4.2V/900mAH LiCoO2电芯的不同电流充电与电池容量的关系曲线(图1),我们可以看出大约500个充放周期后,小电流充电的电池容量明显大于大电流充电的电池容量。

恒压充电时的电压精度要求  
 

作为高能量密度电池,过充会对锂离子电池造成很大的危害,有可能会膨胀漏液甚至发生爆炸。而且过充容易造成电池里面的电解物质加快反应而造成电池的使用寿命减短,因此准确的恒压值充电对锂离子电池的使用寿命而言有着重要的意义。  
 

为了更充分地充满电,要保证恒压值和终止电压值的精度在1%之内。以钴酸锂离子电池为例,最好能尽可能接近4.2V,但又不超过4.2V,这种高精度的电压充电法,可以减少钴的溶解,稳定LiCoO2的层状结构,使它的包覆不发生相变,提高循环性能,并保持高容量。此外,即使轻微的过压也会带来两个现象的改变,电池初始容量减小和电池循环寿命降低。

在多节锂离子电池串联的情况下,为保证获到最大的电池容量和寿命,因此有时甚至要求精度达到0.5%以内。所以说,充电电压的精度控制是锂离子电池充电器的一个关键技术。  
 

目前人们对锂电池充电电压有这样一个误解,认为有了电池保护板,在电压精度上不必关心,这是不可取的。因为电池保护板目的是用于对可能的意外事故进行及时的保护,它考虑的比较多的是安全因素,而不是性能因素。比如以4.2V的电芯为例,保护板的过压保护参数是4.30V(有的可能会要 4.4V),假如每次都过充,以4.30V作为充电截止点,电池容量也会很快衰减的。  
 

为什么需要充电定时器  
 

曾有一家充电器厂商表示,他们以前常碰到充电器用户来退货,说充电器坏了,原因是电池充了一天,电池都充不饱,充电器不转灯,一直是红灯。可厂家对充电器实际测量时,又发现它是正常的,符合出厂要求。这是什么问题呢?这主要是因为这充电器没考虑到电池的老化后自放电变大。如果截止充电的电流设置过小,将使得老化的电池一直达不到充电完成的设置点,从而使得用户产生误判,认为充电器已坏。 
 

充电定时器的作用就是防止已损害的或过多循环的锂电池,在充电的截止段,由于自放电过大,使电池难以进入EOC的状态(高于判断电流),一方面给用户带来电池充不饱的误判,另一方面也可能由于过长时间的充电,带来电池过热发生膨胀,甚至危险。  
 

针对这些因素考量,凹凸科技(O2Micro)推出的新型多串锂离子电池充电芯片OZ8981已是一个完善的解决方案。OZ8981是一个专用的充电管理集成芯片,它带精确电压,电流输出和多重保护,并提供六阶段充电控制模式,系统设计方便且成本低。它主要针对用于轻型电动汽车,电动自行车和电动工具上多节锂离子电池包。

高性价比和高可靠性的OZ8981包含单芯片集成充电控制器,可实现高效的误差放大器输出。它支持0V脉冲充电、预充电、恒流充电、恒压充电、截止充电、自动再充电六阶段智能充电控制。支持对预充电的启动电压、恒流充电值、恒压充电值及截止充电电流值进行灵活设置。

 

此外,OZ8981具有高精准充电电压(<1%)和电流(<5%)输出;通过外部电阻调整,电压输出精度可<0.5%。支持双充电定时器保护:预充电定时,恒压充电定时(最大5小时,或不使用)。支持双温度保护:芯片内部温度保护(115℃),外部过高温保护(默认:44℃) 和过低温保护(默认:2℃)。外部温度保护点可外部灵活设置。支持充电过压保护、过流保护、短路保护。支持电池自动接入检测,支持充电状态的直接LED显示。该器件采用通用封装SOP16。

图4为OZ8981锂离子电池充电曲线图。通过与前端PWM芯片的结合,OZ8981将帮用户快速的实现安全高效且低成本的锂离子电池充电器设计。

关键字:锂离子  电池安全性 编辑:探路者 引用地址:新型的充电解决方案提高锂离子电池安全性

上一篇:延长手机电池使用时间的FAN5902方案
下一篇:采用原子扩散接合法制造的零温度特性标准具滤波器

推荐阅读最新更新时间:2023-10-17 15:14

行业人士:低成本的多节串联锂离子电池充电电路
文中所述的集成电路KA7500B是三星公司出品的一颗专用的脉宽调制型 开关电源 集成控制器,它与TL494完全兼容并可互换。该电路方案如下图所示。 下面对该电路的工作原理作一说明: 图中所绘电路本质上是一个电源电路,具有恒流/恒压输出功能。它带有两路反馈电路,为电流反馈和电压反馈,其中电流反馈的正、负极对应 KA7500B的第1、2脚,输出电流在电阻R12和R20上产生一压降,该压降经R9、R10和R14、R15电阻回馈回来,当KA7500B的第1脚电压大于第2脚电压时,KA7500B会减小输出脉宽(第8、11脚),使电流减小,否则增加脉宽,使输出电流恒定在预设值,其恒流值符合以下公式: 式中R为R12和R20并联后
[电源管理]
行业人士:低成本的多节串联<font color='red'>锂离子</font><font color='red'>电池</font>充电电路
科特高分子PTC解决锂离子电池过充电 短路保护难题
尽管一次保护通常被认为是可靠的,但当静电放电电压过高或超温时可能损坏保护IC 或MOS-FET ,而且在短路时集成电路会发生振荡,同时多数IC+MOS-FET 电路对充电、放电过电流的检测是间接的,并不能保证在电池的所有工作状态下都会提供过电流保护,保护的可靠性也降低了。 一、锂离子电池保护面临的挑战: 锂离子电池同NiMH 或NiCd 电池比较,电流密度大,广泛应用于各种便携式设备中。 通常锂离子电池对过充电十分敏感。当充电至电池两端电压过高时,会增加电池漏液、冒烟、燃烧、爆裂的危险(这类危险往往相当剧烈)。过充电可能由充电失控、电极错误或使用不正确的充电器造成。锂离子电池
[手机便携]
科特高分子PTC解决<font color='red'>锂离子</font><font color='red'>电池</font>过充电 短路保护难题
简化锂离子(Li+)电池充电器测试
摘要:由于Li+电池充电器的充电过程会持续一个小时甚至更长的时间,利用实际负载(即电池)对充电器进行测试将非常耗时。本应用笔记介绍了一种简单的Li+电池仿真方法,与采用实际电池进行测试相比,这种方法能够更加方便地测试Li+电池充电器。 类似文章还发表在Maxim工程期刊第64期(PDF,2.5MB)。 概述 锂离子(Li+)电池比其它化学类型的电池更脆弱,对于违规操作具有非常小的容限。因此,Li+电池充电电路比较复杂,要求高精度电流、电压设置。如果无法满足这些精度要求,充电器可能无法将电池完全充满,进而降低电池寿命,或影响电池性能。 鉴于对Li+电池充电器的这些要求,对充电器设计进行完全测试并在整个工作范围内进行分段测试非常
[电源管理]
简化<font color='red'>锂离子</font>(Li+)<font color='red'>电池</font>充电器测试
七大因素影响锂离子电池循环性能
我们最关注的电池莫过于锂离子电池,因为我们的手机、pad、笔记本的电池就是锂离子电池,它的续航能力也一直是企业研究的一个重点方向。循环性能对锂离子电池的重要程度无需多言,就宏观来讲,更长的循环寿命意味着更少的资源消耗,因而,影响锂离子电池循环性能的因素,是每一个与锂电行业相关的人员都不得不考虑的问题。 1、水分 过多的水分会与正负极活性物质发生副反应、破坏其结构进而影响循环,同时水分过多也不利于SEI膜的形成,但在痕量的水分难以除去的同时,痕量的水也可以一定程度上保证电芯的性能。 2、正负极压实 正负极压实过高,虽然可以提高电芯的能量密度,但是也会一定程度上降低材料的循环性能,从理论来分析,压实越大,相当于对材料的结构破坏
[电源管理]
全隔离式锂离子电池监控和保护系统
  锂离子(Li-Ion)电池组包含大量的电池单元,必须正确监控才能提高电池效率,延长电池寿命并确保安全性。图1所示电路中的6通道AD7280A器件充当主监控器,向系统演示平台(SDP-B)评估板提供精确的电压测量数据,而6通道AD8280器件充当副监控器和保护系统。两个器件均采用8V至30V的单电源宽工作电压范围,工作温度范围为-40℃至+105℃工业温度范围。   AD7280A内置一个±3ppm基准电压源,提供±1.6mV的电池电压测量精度。ADC分辨率为12位,转换48个单元只需7μs时间。   AD7280A具有电池平衡接口输出,用来控制外部FET晶体管,允许各电池放电,并强行使堆叠中的所有电池单元具有相同电压。   A
[电源管理]
全隔离式<font color='red'>锂离子</font><font color='red'>电池</font>监控和保护系统
国标委发布《锂离子电池用聚烯烃隔膜》等五项新能源汽车领域国标
近日,国家标准化管理委员会公布关于批准发布《工业硼酸》等393项国家标准和7项国家标准外文版的公告,其中涉及 新能源汽车 领域的国标共五项,将于2019年1月1日实施。
[汽车电子]
关于开展北京地区第二批锂离子电池行业规范公告申报工作的通知
各有关单位:   按照《关于开展第二批锂离子电池行业规范公告申报工作的通知》(工电子函〔2017〕221号)精神,根据《锂离子电池行业规范条件》(以下简称《规范条件》)和《锂离子电池行业规范公告管理暂行办法》(以下简称《暂行办法》)的规定,为做好我市锂离子电池行业规范公告申报工作。现将有关事项通知如下:   一、北京市经济和信息化委员会负责北京地区锂离子电池行业规范公告申请材料的受理和初审工作。   二、符合《规范条件》和《暂行办法》规定的锂离子电池生产企业提出规范公告申请时,应按《暂行办法》、《规范条件》和相关通知要求提交材料,提交的每份申请书封面应加盖企业公章,每份申请书及所附材料装订成册(一式3份)报
[新能源]
化学电源先锋——锂离子电池
    摘要: 介绍锂离子电池的工作原理、性能参数及特性、安全性能,同时对聚合物锂离子电池、塑料电池也做了介绍。锂离子电池的优越性能使之在便携电子应用领域中必将替代其它二次电池。锂离子电池的发展方向是小型化、薄型化、大容量,聚合物锂离子电池、塑料锂离子电池很好地适应了这一发展需求。     关键词: 锂离子电池  安全性 自1859年GastonPlante提出铅酸蓄电池概念以来,化学电源界一直在探索新的高比能量、循环寿命长的二次电池。1990年日本Sony公司率先研制成功并实现商品化的锂离子电池是在锂电池基础上发展起来的。锂离子电池是以嵌锂化合物作为正负极材料,具有高电压、大容量、自放电小及绿色环保优
[应用]
小广播
最新电源管理文章
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved