模拟电源管理与数字电源管理

最新更新时间:2013-03-05来源: EDN关键字:模拟电源管理  数字电源管理 手机看文章 扫描二维码
随时随地手机看文章

  一种新技术的引入通常需要一个过渡过程,在这个过程中,用户不断地检验新技术中实际可行的因素和不切实际内容。本文旨在澄清模拟数字电源管理之间的不同。从多方面考察两种技术差异及其对系统性能的影响。表1、表2分别列出了各自的优、缺点:

  从用户的角度看,很难确定哪一种方式更好。不断提高的系统复杂度为考虑使用数字电源管理方案的用户铺平了道路,虽然有些设想在不久以前还看起来难以逾越。但是,数字电源产品的应用案例及其相关的一些传说表明,人们在某种程度上为数字系统所能处理的问题蒙上了一层不切实际的光环。随着这项技术步入其自然的发展轨道,应该平息其所伴随的神秘色彩以及不切实际的宣传。用户随后所面临的问题是:那一种方案最好?

  总的来说,电源管理没有纯粹的数字或模拟方案。以模拟控制架构为例,其内部脉宽调制电路即包含了数字电路,例如:时钟、门电路等(如BobMammano设计的SG1524)。三十年后,数字脉宽调制(PWM)成电路同样也包含了明显的模拟电路,如:ADC、基准源、放大器等。因此,正确的方案选择取决于电路功能的合理划分,而正确的划分又与当前可以利用的技术和系统需求有关。因此,当

前的划分标准可能不同于将来的标准。

  目前,为了满足系统误差的要求,一个理想的系统应能提供较高精度,要求电源具有更小的体积,而且满足高速通信、高速处理系统中微处理器或ASIC对电源容限的苛刻要求。基准精度一般为1%,而最新的处理器、ASIC电源要求误差不超过几毫伏。工作在低压状态时,要求优于1%的精度,而且在高温情况下也必须满足这一精度要求,目前大多数系统的工作温度范围为0℃~85℃。

  由于多处理器核或小尺寸处理器对应的I/O口对于不正确的压差所引起的“闭锁”现象非常敏感,电源的跟踪与上电顺序也非常关键。复杂的电路板需要多电源供电,因此对上电顺序和跟踪的要求也更加严格。这些功能利用模拟技术很难实现,而数字技术则可解决这一复杂问题,提供精确、简单的方案。

  
表1

  
表2

  高端系统要求近乎为零的故障时间,因此,对于冗余系统的监控也十分重要,以确保系统可靠工作。这就需要了解产生电源故障的原因和过程,在出现问题时采取迅速的解决措施。用模拟技术构建监控电路需要很多分离元件或专用电路。有些系统由于受体积、价格及复杂度的限制,不得不简化了监控环节,导致较低的系统可靠性。对于数字系统来说,提供这种系统检控几乎不需要增加系统成本。在数字系统中,用于数字引擎操作的信息采用数字格式,可以很容易地增加通信容量。

  为了快速占领市场、支持产品的需求,设计人员常常在很仓促情况下开发ASIC,甚至没有经过完整的评估就投入使用。从而使产品在投放市场的过程中处于两难境地,一方面可能需要昂贵的招回成本,修改工作电压、监控电路及上电顺序控制;另一方面可能忽视系统的可靠性,为系统的后续使用埋下隐患。这两种情况都违背了零失效时间的系统要求,这时,比较明智的选择可能是数字方案,对系统进行现场编程,对用户来说实现方便、透明的系统升级。  

  
图1:基本数字处理功能,基于MAX8688数字控制/监测IC

  
图2:可控制、监测4路电源的系统

  方案的折中考虑

  从目前的系统及不断涌现的需求看,利用模拟方法解决所有问题显然不能满足发展的需求。目前,很多用户在考虑数字方案时,比较关心的一个问题是“闭环问题”。对于大多数工程师来说,数字电源意味着一个能够进行数据通信、读写信息、更改设置、无需改变硬件进行升级的系统,在数字域完成这些操作无需闭环反馈。

  对于选择数字电源还是模拟电源这个问题,其原则应该是“合适就好”。如上所述,数字或模拟方案都不能保证所用功能的最优化。每种方案都有其固有的优点和缺点,正确的系统分析有助于为具体的应用提供最合理的解决方案。

  
表3:模拟与数字电路分析

  上表中的脉宽调制电路(PWM)可能最好保留模拟架构,它主要由基准、误差放大器、比较器和电压斜波电路组成,有些方案还包括滞回电路。任何情况下,保留这些基本的模拟电路单元都是比较理想的选择,它占用更小的硅片面积,也更便宜。PWM控制IC包括许多其它单元(电压调节、MOSFET驱动、远端检测放大器、欠压锁存电路及过压、过流保护电路),但大部分电路不受PWM电路形式(模拟或数字)的影响。

       对保护电路的需求没有改变,但要求电路在发生故障时做出快速响应,一般要求在几个ns以内。采用最快的并行比较型ADC结构,可以提高数据量化的速度,但更多的响应时间由判决引擎(处理器或状态机)决定。考虑到驱动链路固有的传输延时,所产生的总延时是难以接受的。因此,过流、过压保护功能需要放在模拟电路侧。

  对于电流的测量,通常需要一个低失调、高线性度、高共模抑制比的差分放大器。这些要求不受量化数据的影响,只能通过高性能模拟电路才能满足这一严格的要求。实际设计中,无论是否量化数据,电流和温度的监测需采用模拟方案。

  不管采用数字方案还是模拟方案,基准源都是必需的。在数字系统中,它为ADC提供参考电压,从某种程度上讲这也更倾向于模拟设计。ADC为数字输出,但决定其精度与线性指标的是模拟电路。为此,我们把基准和ADC都放在了表3的左侧。

  显然,通信电路属于数字部分,非易失存储器用于存储电源设置。不管是处理器还是状态机,都是数字方案的控制核心。DAC包含大部分模拟电路,但是,考虑到数字电路在DAC中的重要地位,我们将其置于表格右侧。

  另外一项有价值的数字技术是低速控制回路,可以进一步提高系统模拟输出的精度。该任务不可能由模拟电路实现,而是依靠高性能ADC精确、复杂的校准过程来实现,由此我们可以看到一个真正的混合信号处理架构,是精密的模拟电路与灵活的数字电路的有机结合。这种机制中所需要的ADC与数字PWM中的ADC不同。PWMADC要求拥有高

分辨率和速率,而ADC不可能在同时拥有高速、高精度的同时保持低成本。总的来说,PWMADC必须采用闪电式ADC提供必要的速率,而这种ADC拓扑在分辨率超过8位时就不太实用了,8位ADC与12位ADC相比精度降低了大约16倍,因此,比较可行的方案是选择12位SARADC,能够以较低的成本提供高精度和合理的转换速率。

  经过数字转换后,用户可以方便地设定多个门限检测过压、欠压、过流、高温等故障。为了在检测到上述故障时做出快速的响应,有必要选择模拟电路,但非常精确的门限检测则需通过数字化实现。数字电路可以为上述检测设定多种门限,并可以用不同方法实现。例如,告警和故障门限可以简单地用标志位实现,也可以控制关闭输出。

  为大部分现有的模拟PWM架构增加数字功能的一种方法是结合专用IC,例如Maxim的MAX8688。该IC配合模拟PWM电路,可以实现一系列数字功能。这种方法有两个优势:一是所选择的电源管理器件仍然可以作为主电源输出;二是所有用于监控、跟踪、裕量设置、基准设置的分立电路可以针对一个电源进行设置,结合一些附加的逻辑电路,我们的器件提供4×4TQFN封装。

  利用检流电阻、电感或电路板引线的直流电阻可以检测不同的输出电压、电流,从而监视电源输出。通过比较REFIN和反馈信号,直接控制PWM操作和输出电压设置。借助用户可编程寄存器智能模块,可以实现软启动、启动延时、关闭延时、软关闭、摆率控制等功能,同时也可以实现过压、欠压、过流、高温保护。

  作为输出监控的附属产品,裕量与电流分配等简单功能不增加系统的任何成本。这样,在考虑整个系统成本的情况下,MAX8688提供了一种简单而又精准的数字电源管理方法。

关键字:模拟电源管理  数字电源管理 编辑:探路者 引用地址:模拟电源管理与数字电源管理

上一篇:开关电源电磁标准及其干扰抑制
下一篇:电源管理趋势探讨

推荐阅读最新更新时间:2023-10-17 15:14

NS模拟产品系列提升汽车电子系统稳定度
美国国家半导体公司(National Semiconductor;NS)宣布推出一系列适用于新一代汽车电子系统的芯片产品。该系列能源效率极高的创新产品最适用于汽车的LED照明系统、动力传动系统、安全系统以及娱乐信息系统。 美国国家半导体的温度传感器、数据转换器、音讯芯片、运算放大器、电源管理芯片和接口电路不但高度可靠及准确,而且还可在高温环境以及广阔的电压范围内作业。这些芯片的零件编号许多都冠上字母「Q」,代表这些产品符合美国汽车电子协会(AEC)针对汽车生产流程而特别制订的AEC-Q100标准。电子系统设计工程师可以利用这些产品开发各种汽车电子系统,确保汽车更安全可靠、车厢环境更舒适、燃油使用效率更高。
[电源管理]
电源管理迈入数字控制新时代
在模拟电路系统中,通信、网络、智能家电等都逐步实现了数字化,而最后一个有待攻破的堡垒就是电源。市场研究机构iSuppli公司电源IC分析师Chris Ambarian表示,30年前电源行业开始转向开关模式电源MOSFET,这是一个很大的变化,而现在电源数字化趋势可能是更大的变化。美国数字电源管理芯片提供商iWatt公司销售副总裁Gary Pinelli和设计总监Mark Muegge也持有相同观点。   美国数字电源管理芯片提供商iWatt公司销售副总裁Gary Pinelli和设计总监Mark Muegge   效率达90%,数字电源控制技术突破性能瓶颈   日前于深圳召开的由iWatt公司和其代理商骏龙科技有限公司联合举办
[新品]
电源管理 IC 以数字方式监视和控制 8 个电源
    引言     当今的高可靠性系统需要采用复杂的数字电源管理解决方案对大量的电压轨进行排序、监控、监视和裕度调节。的确,如今一块应用电路板具有几十个电压轨的情况并不少见,这些电压轨各具自己独特的要求。通常,面向这些系统的电源解决方案要求把多个受控于一个 FPGA 或微控制器的分立器件散布在电路板的周围,以对电源阵列进行排序、监控、监视和裕度调节。在此类方案中,开发必要的固件需耗费大量的时间,而低估这项任务的复杂性与完成周期的倾向是普遍存在的。     具 EEPROM 的 LTC®2978 8通道数字电源管理器可为电源系统设计人员提供一款集成型模块化解决方案,其调试时间和工作量相比于微控制器解决方案有所减少。LTC29
[电源管理]
<font color='red'>电源管理</font> IC 以<font color='red'>数字</font>方式监视和控制 8 个电源
具有向后兼容模拟控制的数字电源管理电路
最近超大规模集成技术的发展扩宽了数字控制应用范围,尤其是在电源 电子元件 方面的应用。数字控制IC具有多种优势,比如裸片尺寸更小、无源元件数量更少、成本更低。另外,数字控制可利用电源管理总线(PMBus)来完成系统配置;高级控制算法能改善性能;可编程性则可实现应用优化。随着 数字电源 管理的进一步普及并代替大量模拟控制器,它必须保持现有功能的向后兼容性,从而使数字电源模块和模拟电源模块均可在同一个系统中工作。   模拟电源模块中一般使用输出电压调整,这样最终用户可以通过外部电阻更改电源模块的输出电压。它具有增强的灵活性,允许将某些经过选择的标准模块用到几乎所有应用中,而无论电压要求如何。 图1显示AGF600-48S
[电源管理]
具有向后兼容<font color='red'>模拟</font>控制的<font color='red'>数字</font><font color='red'>电源管理</font>电路
整合数字电源管理模拟控制环路的DC/DC控制器设计
 LTC3883/LTC3883-1是一款通用、单通道、多相(PolyPhase)、降压型 控制器 ,具有 数字电源 系统管理、高性能模拟控制环路、内置驱动器、远程输出电压检测和电感器温度检测功能。为了最大限度地减小解决方案尺寸和成本,LTC3883/LTC3883-1采用了 凌力尔特 公司正在申请专利的自动校准程序以测量电感器DC电阻,在跨电感器两端逐周期测量电流时(无损耗DCR检测)得到准确的输出电流测量值。LTC3883/-1基于流行的双通道LTC3880/-1。 数字电源管理 今天数据中心系统的挑战是,尽可能提高系统所有层面的效率,包括负载点、电路板、机架甚至安装层面,以变得更加环保。例如,将工作流发送给尽可
[电源管理]
整合<font color='red'>数字</font><font color='red'>电源管理</font>和<font color='red'>模拟</font>控制环路的DC/DC控制器设计
电源管理新趋势 数字电源进入高端应用
尽管台湾电源管理器件供应商Richtek科技股份有限公司的专案经理郑刚声称还看不到数字电源的实际应用,但美国一家新兴数字电源管理IC供应商Primarion公司行销副总裁DeepakSavadatti在IIC-2007展览会上表示,该公司数字电源解决方案的目标应用包括:英特尔和AMD微处理器、电信设备、存储器/FPGA/DSP/ASIC的智能负载点、服务器和数据存储设备,并已在IBM的服务器、NVIDIA公司的图形控制卡、思科系统的路由器和Delta的电源模块等典型的高端产品上获得批量应用。 不过,到目前为止,模拟电源解决方案仍牢牢占据市场的主流地位。尽管模拟电源解决方案的成本、性能(如负载变化时的电源响应时间)和占板面积等指标都优
[新品]
灵活高效的数字方案满足新兴电源管理需求
过去,面向计算和通信应用的功率转换IC的实现非常简单。模拟脉冲宽度调制(PWM)IC只有两个任务:输出功率和调节电压。诸如监视或诊断等其他功能被视为不必要。在极少数需要这些功能的情况下,则可以通过外接芯片实现。 然而,如今对高效、可靠的 电源管理 的需求正以比摩尔定律的发展速度快得多的速率迅猛增长。面向计算和通信应用的主要处理器件包含了数十亿个晶体管,这些器件对电源的要求更加精确和复杂。 在数据通信领域,出现了采用36至40个电压轨的电路板。在计算应用中,主板常常利用超过20个电压轨为各种ASIC、存储器和处理器芯片组提供电源。这种复杂度要求对多种不同的参数进行精密的诊断、控制和监视,而这是
[电源管理]
灵活高效的<font color='red'>数字</font>方案满足新兴<font color='red'>电源管理</font>需求
ADI 在数字电源上实现两大突破
  相比于模拟电源,数字电源能提供最高的能源效率,并能与其它器件更容易集成。但是由于其设计的复杂性以及软件的控制一直是业界没有解决的问题,其进程并不像当初想象得那么快。据ADI电源管理产品副总裁Peter Henry表示,目前数字电源在电源市场的渗透率不到10%,正是以上的两大因素影响了数字电源的采用。他认为目前数字电源的成本并不是阻碍该市场前进的主要原因,因为目前数字电源主要用于网络与通信基础设施中,这些市场对能效与可靠性更重视,“并且,从总体成本上看,数字控制电源还比模拟控制更便宜。”Henry表示。   “此次,我们推出的突破性技术将会推进数字电源市场前进的步伐。”他说道。         Peter
[焦点新闻]
小广播
最新电源管理文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved