高频感应加热电源的锁相控制

最新更新时间:2013-03-11来源: EDN关键字:高频感应  加热电源  锁相控制 手机看文章 扫描二维码
随时随地手机看文章

  1 概述

  由于感应加热电源是热处理的重要设备,其控制方案历来备受关注。由于热处理现场作业条件复杂,干扰因素较多,在设计时要尽量减少干扰源和减弱或消除外界干扰对系统的影响,因此,根据实际情况控制方案不停地在改进中。

  感应加热电源逆变器按其负载补偿电容所处的位置不同,可分为电流型逆变器和电压型逆变器。电流型逆变器具有电路结构简单,电源运行可靠,对负载适应能力强及过流保护容易等优点,图1即是电流型逆变电路的拓扑。对于电流型电路而言,首先要防止逆变器的瞬间开路;其次是选取适当定时或定角的超前触发方式;最后,要求逆变器具有较宽的启动频率范围。

图1 电流型感应加热电源拓扑

  2 控制方案的原理和改进

  逆变器的控制框图如图2所示。其中Vo为逆变器的输出电压信号,经过峰值检测,与控制给定值比较产生切换装置的切换信号X1,当X1为高电平时,切换装置输出信号X2与它激信号接通,逆变器工作在它激状态,控制信号从它激信号发生器发出,电路工作频率固定,且由它激信号发生器控制;当X1为低电平时,X2与自激信号接通,逆变器工作在自激状态,电路工作频率由负载本身的固有频率决定。根据锁相环的闭环滤波功能,在锁相环反馈电路中进行延时,用来补偿系统的固有延迟,调节延迟时间td,逆变器既可以工作于感性状态,也可以工作于容性状态。

图2 逆变器控制电路框图

  3 逆变器瞬间开路的防止与转换的平滑过渡

  以全控型器件作为开关的逆变器的控制通常采用他激转自激的控制策略,即在开机或是负载电压低于阈值Vco时采用开环的定频控制,工作于他激状态;而当输出负载电压大于阀值Vco时进行自动切换,使逆变器工作于频率闭环,跟踪负载频率的变化。

  但是这种控制方案存在这样的问题:由于它激信号和自激信号不可能总是同步的,因此,在切换过程中多数情况下会产生窄脉冲(低电平),这个窄脉冲不可避免地造成逆变器的瞬间开路;另外,现场的实际运行环境较差,通常都是在恶劣的电磁环境中工作,这种控制方案对于外界的抗干扰性能很差,不能满足系统的抗干扰的要求。

  针对这种情况,在切换电路后级插入一个锁相滤波电路,用以滤除在转换时产生的窄脉冲,同样,这种电路对外界干扰产生的尖峰也有很强的抑制能力。图3给出了关键点X1及X3在切换前后的波形。从图3中可以看出,由于锁相特性,切换过程中的窄脉冲被锁相环滤掉了。图3中1路为X1的波形,2路为X2的波形,3路为X3的波形。

图3 控制电路切换波形

  图4给出了逆变器的输出端电压在由它激切换到自激时的波形。图5给出了逆变器从自激转到它激时的波形图。由这两个波形可以看出,切换过程是一个平滑过渡过程,和图3对比可知,系统的稳定性大大提高,前级窄脉冲被锁相电路滤除了。

图4 它激转自激时输出端电压波形

图5 自激转它激时输出端电压波形

  4 精确定时的实现

  由于逆变器输出引线电感的存在,为减小逆变管的电流电压应力,一般要求逆变器工作于容性换流状态。这就要求在槽路电压过零之前的某个时刻(某个角度)换流。这就把控制电路分为定时和定角两种触发方式。本控制电路中采用定时触发方式。

  在传统的中频感应加热电源中,定时触发方式一般是由槽路的电压和电流合成信号来实现的。这种电路的定时是近似的。而在超音频感应加热中,由于控制电路的固有延迟的存在,使这种近似不再成立。所以,采用电压和电流合成的定时触发方式,超前时间会随着槽路谐振频率,输出电压幅值的变化而变化。

  利用在锁相环的反馈电路中插入延迟环节,一方面补偿了控制系统的固有延迟,另一方面可以获得精确的超前触发时间。显然,控制电路中的这个延迟环节的时间常数与槽路谐振频率和电压幅值是相对独立的。

  5 结语

  通过实验验证和后来的现场超音频感应加热电源的实际运行效果来看,这种控制电路具有较强的抗干扰能力和平稳的转换能力,恒定的超前触发时间,和较大的启动范围。

关键字:高频感应  加热电源  锁相控制 编辑:探路者 引用地址:高频感应加热电源的锁相控制

上一篇:新风光直驱式风力发电并网变流器装置
下一篇:数控直流稳压电源设计

推荐阅读最新更新时间:2023-10-17 15:15

感应加热电源常见调功方式的对比分析
1.引言 感应加热技术主要是利用电磁感应原理来对工件进行加热,它采用的是非接触式加热方式。由于感应加热过程中,能量的传递是以电磁波的形式进行的,所以受外界的干扰小,能量的扩散少,大大提高了能量的利用,提高了加热的效率,使感应加热在钎焊行业、淬火行业、退火行业、金属熔炼热处理、机械制造、轻工及电子类的加工等现代工业生产中得到了广泛的应用。感应加热电源在实际应用中需要根据负载等效参数随温度的变化和加热工艺的需要,随时对感应加热电源输出功率的进行调节,所以选择合适的调功方式对于感应加热电源来说非常重要。 2.感应加热电源常见的调功方式 目前,感应加热电源的功率调节方式可分为两大类:直流调功和逆变调功两大类。直流调功是对逆变器直流侧的输入
[电源管理]
<font color='red'>感应</font><font color='red'>加热</font><font color='red'>电源</font>常见调功方式的对比分析
利用SG3525实现调频控制感应加热电源
1. 引言 :     感应加热技术具有加热温度高、加热效率高、速度快、加热温度容易控制、易于实现机械化、自动化、无空气污染等优点,现在感应加热电源已广泛用于金属熔炼、透热、热处理和焊接等工业过程。     根据功率调节量的不同感应加热电源有多种调功方式,调频调功是通过改变逆变器工作频率从而改变负载输出阻抗以达到调节输出功率的目的 。这种调功方式控制比较简单,可以对电路的工作频率进行直接控制,而且能对功率连续调整。本文正是基于调频调功这种方式,由PWM控制芯片SG3525控制实现的加热电源。 2. 主电路拓扑结构和控制原理: 2.1  主电路结构:     本文设计的感应加热电源为串联谐振式全桥IGBT逆变电源,其逆
[电源管理]
利用SG3525实现调频<font color='red'>控制</font>的<font color='red'>感应</font><font color='red'>加热</font><font color='red'>电源</font>
基于PI控制的全数字锁相环设计
    锁相环在通信、无线电电子学和自动控制等领域得到了极为广泛的应用,它已成为各类电子系统中一个十分重要的部件。由于全数字锁相环(ADPLL)消除了模拟锁相环中压控振荡器(VCO)的非线性,鉴相器不精确,部件易饱和以及高阶环不稳定等特点,而其本身又具有参数稳定、可靠性高、易于集成的特点,因此,ADPLL得到了越来越多的应用。传统的数字锁相环系统是希望通过采用具有低通特性的环路滤波器,获得稳定的振荡控制数据。对于数字滤波器采用基于DSP的运算电路的全数字锁相环,当环路带宽很窄时,环路滤波器的实现将需要很大的电路量,这给专用集成电路的应用和片上系统SoC(System on Chip)的设计带来一定困难。另一种类型的全数字锁相环是采用
[嵌入式]
单片机控制的ADF4106锁相频率合成器设计
单片机控制的ADF4106锁相频率合成器设计 本文提出了一种基于单片机AT89C2051控制的、利用锁相技术、以ADI公司生产的频率合成器芯片AD4106为核心,来实现锁相频率合成器的设计方案。 在现代电子技术的设计与开发过程中,特别是在通信、雷达、航空、航天以及仪器仪表等领域,都需要进一步提高一系列高精度、高稳定度的频率源的频率精度。这样,一般的振荡器已经无法满足各种应用的发展要求,而晶体振荡器的性能虽然比较好,但其频率单一,或只能在极小的范围内进行微调。 1 系统结构原理 该锁相频率合成器的具体实现结构如图1所示。本系统由频率合成器AD4106、环路滤波器、压控振荡器、晶体振荡器以及参考分频器和程序分频器共
[单片机]
单片机<font color='red'>控制</font>的ADF4106<font color='red'>锁相</font>频率合成器设计
锁相控制及初始化简析
  MCU的支撑电路一般需要外部时钟来给MCU提供时钟信号,而外部时钟的频率可能偏低,为了使系统更加快速稳定运行,需要提升系统所需要的时钟频率。这就得用到锁相环了。例如MCU用的外部晶振是16M的无源晶振,则可以通过锁相环(PLL)把系统时钟倍频到24M,从而给系统提供更高的时钟信号,提高程序的运行速度。 51单片机,AVR单片机内部没有锁相环电路,其系统时钟直接由外部晶振提供。而XS128内部集成了锁相环电路,其系统时钟既可由外部晶振直接提供,也可以通过锁相环倍频后提供,当然,还有由XS128内部的时钟电路来提供(当其它来源提供的系统时钟不稳定时,内部时钟电路就起作用了,也就是自时钟模式)。   锁相环作为一个提供系统时钟
[单片机]
感应加热用IGBT超音频电源
    摘要: 介绍了用于感应加热的,采用IGBT的超音频感应加热电源的原理,与应用实例。     关键词: IGBT  感应加热  并联谐振式逆变器 1 引言 感应加热是将工件直接加热,它具有效率高,作业条件好,温度容易控制,金属烧损小,无需预热等优点。 传统的感应加热设备应用的电力电子器件是电子管和快速晶闸管。电子管电压高,稳定性差,幅射强,效率低,已经到了淘汰的边缘,但它频率高,功率大,所以在市场上仍有一席之地。快速晶闸管是目前应用的主力军,它耐压高,电流大,抗过流、过压能力较强。但它只能工作在10000Hz以下,这使其使用范围受到了限制。 IGBT是一种复合功率器件,它集双极型功率晶体
[电源管理]
基于单片机控制的ADF4106锁相频率合成器设计
0 引言 在现代电子技术的设计与开发过程中,特别是在通信、雷达、航空、航天以及仪器仪表等领域,都需要进一步提高一系列高精度、高稳定度的频率源的频率精度。这样,一般的振荡器已经无法满足各种应用的发展要求,而晶体振荡器的性能虽然比较好,但其频率单一,或只能在极小的范围内进行微调。因此,本文提出了一种基于单片机AT89C2051控制的、利用锁相技术、以ADI公司生产的频率合成器芯片AD4106为核心,来实现锁相频率合成器的设计方案。 1 系统结构原理 该锁相频率合成器的具体实现结构如图1所示。本系统由频率合成器AD4106、环路滤波器、压控振荡器、晶体振荡器以及参考分频器和程序分频器共同构成锁相环路(PLL)。该环路输入端由高稳定度和高
[单片机]
基于单片机<font color='red'>控制</font>的ADF4106<font color='red'>锁相</font>频率合成器设计
基于DSP的全桥移相控制感应加热电源研究
   0 引言   随着感应加热电源对自动化控制程度及可靠性要求的提高,感应加热电源正向智能化与数字化控制的方向发展。DSP具有高速的数字处理能力及丰富的外设功能,使得一些先进的控制策略能够应用实践,研究基于DSP的数字控制感应加热电源,可使产品具有更加优良的稳定性及控制的实时性,并且具有简单灵活的特点。本文以TMS320F2812为核心,设计了超音频串联谐振式感应加热电源的数字化控制系统,包括数字锁相环(DPLL)、移相PWM发生与系统闭环控制等。    1 系统结构   串联谐振式感应加热电源主电路如图1所示。采用不控整流加可控逆变电源结构,负载为感应线圈(等效为电感)与补偿电容串联。逆变部分采用带锁相环的移
[嵌入式]
小广播
最新电源管理文章
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved