开关电源中功率MOSFET管损坏模式及分析

最新更新时间:2013-04-25来源: 电子技术应用关键字:开关电源  MOSFET管 手机看文章 扫描二维码
随时随地手机看文章

    目前,功率MOSFET管广泛地应用于开关电源系统及其他功率电子电路中。实际应用中,特别是在一些极端的边界条件下,如系统的输出短路及过载测试、输入过电压测试以及动态的老化测试中,功率MOSFET管有时候会发生失效损坏。工程师将损坏的功率MOSFET管送到半导体原厂做失效分析后,分析报告的结论通常是过电性应力EOS,却无法判断是什么原因导致MOSFET的损坏。
    本文将通过功率MOSFET管的工作特性,结合失效分析图片中不同的损坏形态,系统地分析过电流损坏和过电压损坏。同时根据损坏位置不同,分析功率MOSFET管的失效发生在开通的过程中或发生在关断的过程中,从而为设计工程师提供一些依据,找到系统设计中的问题,提高电子系统的可靠性。
1 过电压和过电流测试电路
    过电压测试的电路图如图1(a)所示,选用40 V的功率MOSFET:AON6240,DFN5?鄢6封装。通过开关来控制,将60 V的电压直接加到AON6240的D极和S极,熔丝用来保护测试系统,功率MOSFET损坏后,将电源断开。测试样品数量为5片。

    过电流测试的电路图如图1(b)所示,选用40 V的功率MOSFET:AON6240,DFN5?鄢6封装。首先合上开关A,用20 V的电源给大电容充电,电容C的容值为15 mF,然后断开开关A,合上开关B,将电容C的电压加到功率MOSFET管的D极和S极,使用信号发生器产生一个电压幅值为4 V、持续时间为1 s的单脉冲,加到功率MOSFET管的G极。测试样品数量为5片。
2 过电压和过电流失效损坏
    将过电压和过电流测试损坏的功率MOSFET管去除外面的塑料外壳,露出硅片正面失效损坏的形态的图片,分别如图2(a)和图2(b)所示。

    从图2(a)可以看到,过电压的失效形态是在硅片中间的某一个位置产生一个击穿小孔洞,通常称为热点,其产生的原因就是因为过压而产生雪崩击穿,在过压时,通常导致功率MOSFET管内部的寄生三极管导通[1]。由于三极管具有负温度系数特性,当局部流过三极管的电流越大时,温度越高。而温度越高,流过此局部区域的电流就越大,从而导致功率MOSFET管内部形成局部的热点而损坏。硅片中间区域是散热条件最差的位置,也是最容易产生热点的地方,可以看到,图中击穿小孔洞(即热点)正好都位于硅片的中间区域。
    从图2(b)可以看到,在过流损坏的条件下,所有的损坏位置都发生在S极,而且比较靠近G极。这是因为电容放电形成大的电流流过功率MOSFET管,所有的电流汇集于S极,此时温度最高,最容易产生损坏。
    功率MOSFET管内部由许多单元并联形成,如图3(a)所示。其等效的电路图如图3(b)所示。在开通过程中,离G极越近的区域,VGS的电压越高,流过该区域的单元电流越大,在瞬态开通过程承担的电流就越大。因此,离G极近的S极区域温度更高,更容易因过流产生损坏。

3 过电压和过电流混合失效损坏
    在实际应用中,单一的过电流和过电流的损坏通常很少发生,更多的损坏发生在过流后,由于系统的过流保护电路工作,关断功率MOSFET,而在关断的过程中常发生过压(即雪崩)。图2(c)即为功率MOSFET管先发生过流,然后进入雪崩发生过压的损坏形态。与过流损坏形式类似,过压多发生在靠近S极的地方。但是也存在因为过压产生的击穿洞坑远离S极的情况。这是因为在关断的过程,距离G极越远的位置,在瞬态关断过程中,VGS的电压越高,承担电流也越大,因此更容易发生损坏。
4 线性区大电流失效损坏
    在电池充放电保护电路板上,一旦负载发生短线或过流电,保护电路将关断功率MOSFET管,以免电池产生过放电。与短路或过流保护快速关断方式不同,功率MOSFET管是以非常慢的速度关断,如图4所示。功率MOSFET管的G极通过一个1 MΩ的电阻,缓慢关断。从VGS波形上看到,米勒平台的时间高达5 ms。米勒平台期间,功率MOSFET管工作在放大状态,即线性区。
    功率MOSFET管开始工作的电流为10 A,使用器件为AO4488,失效的形态如图4(c)所示。当功率MOSFET管工作在线性区时,它是负温度系数[2],局部单元区域发生过流时,同样会产生局部热点。温度越高,电流越大,致使温度进一步增加,导致过热损坏。可以看出,其损坏的热点的面积较大,这是因为该区域经过了一定时间的热量的积累。另外,破位的位置离G极较远。损坏同样发生于关断过程,破位的位置在中间区域,同样也是散热条件最差的区域。

    另外,在功率MOSFET管内部,局部性能弱的单元,其封装形式和工艺都会对破位的位置产生影响。
    不仅如此,一些电子系统在起动的过程中,芯片的VCC电源(也是功率MOSFET管的驱动电源)建立比较慢。如在照明中,使用PFC的电感绕组给PWM控制芯片供电,在起动的过程中,功率MOSFET管由于驱动电压不足,容易进入线性区工作。在进行动态老化测试时,功率MOSFET管不断地进入线性区,工作一段时间后,就会形成局部热点而损坏。
    使用AOT5N50作测试,G极加5 V的驱动电压,做开关机的重复测试,电流ID=3 A,工作频率为8 Hz。重复450次后,器件损坏,波形和失效图片如图4(b)和图4(c)所示。可以看到,器件形成局部热点,而且离G极比较近。因此,器件是在开通过程中,由于长时间工作于线性区而发生损坏。
    图4(e)是器件 AOT5N50在一个实际应用中,在动态老化测试过程发生失效的图片。起动过程中,MOSFET实际驱动电压为5 V,MOSFET工作在线性区,失效形态与图4(c)相同。
    功率MOSFET单一的过电压损坏形态通常是在中间散热较差的区域产生一个局部的热点,而单一的过电流的损坏位置通常是在电流集中的靠近S极的区域。实际应用中,通常先发生过流,短路保护MOSFET关断后,又经历雪崩过压的复合损坏形态。如果损坏位置距离G极近,则开通过程中损坏的几率更大;如果损坏位置距离G极远,则关断开通过程中损坏几率更大。功率MOSFET管在线性区工作时,产生的失效形态也是局部的热点,热量的累积影响损坏热点洞坑的大小。散热条件是决定失效损坏发生位置的重要因素,芯片的封装类型及封装工艺影响芯片的散热条件。另外,芯片生产工艺产生单元性能不一致而形成性能较差的单元,也会影响到损坏的位置。
参考文献
[1] 刘松.基于漏极导通区特性理解MOSFET开关过程[J]. 今日电子,2008(11):74-75.
[2] 刘松.理解功率MOSFET的开关损耗[J].今日电子,2009(10):52-55.
[3] 刘松,葛小荣.理解功率MOSFET的电流[J].今日电子,2011(11):35-37.
[4] 刘松.理解功率MOSFET的Rds(on)温度系数特性[J].今日电子,2009(11):25-26.
[5] 刘松,葛小荣.应用于线性调节器的中压功率功率MOSFET的选择[J].今日电子,2012(2):36-38.
[6] 刘松,陈均,林涛.功率MOS管Rds(on)负温度系数对负载开关设计影响[J].电子技术应用,2010,36(12):72-74.

分享到:
关键字:开关电源  MOSFET管 编辑:探路者 引用地址:开关电源中功率MOSFET管损坏模式及分析

上一篇:用电子组件提高电动型汽车的电池性能
下一篇:浅谈三极管和MOS管作开关用时的区别

推荐阅读最新更新时间:2023-10-17 15:16

变频器开关电源的检修思路和检修方法
变频器的开关电源电路完全可以简化为上图电路模型,电路中的关键要素都包含在内了。而任何复杂的开关电源,剔除枝蔓后,也会剩下上图这样的主干。其实在检修中,要具备对复杂电路的“化简”的能力,要在看似杂乱无章的电路伸展中,拈出这几条主要的脉络。要向解牛的庖丁学习,训练自己的眼前不存在什么整体的开关电源电路,只有各部分脉络和脉络的走向——振荡回路、稳压回路、保护回路和负载回路等。      看一下电路中有几路脉络。   1、振荡回路:开关变压器的主绕组N1、Q1的漏--源极、R4为电源工作电流的通路;R1提供了启动电流;自供电绕组N2、D1、C1形成振荡芯片的供电电压。这三个环节的正常运行,是电源能够振荡起来的先决条件。   当然,PC
[电源管理]
变频器<font color='red'>开关电源</font>的检修思路和检修方法
一款低压大电流开关电源的电路设计
为了以更低的功耗获得更高的速度和更佳的性能,要求电源电压越来越低,瞬态性能指标越来越高,因此对 开关电源 提出了越来越高的要求。用原有的电路拓扑及整流方式已不能满足现在的要求,为了适应IC芯片发展的需要,人们开始研究新的电路拓扑。因为输出电压很低,所以,同步整流自然成为这种低压 大电流 电源的必然选择,考滤到产品的复杂程度及产品可靠性,同步整流一般选择自驱动同步整流,能与自驱动同步整流电路较好结合的拓扑大致有三种:有源箝位正激变换器;互补控制半桥变换器;两级结构变换器。与两级结构变换器相比,有源箝位变换器和互补控制半桥变换器所用器件少,更具有吸引力。这两种变换器拓扑容易实现软开关,工作频率可以更高;变压器的磁芯可以双向磁化
[电源管理]
一款低压大电流<font color='red'>开关电源</font>的电路设计
PSR原边反馈开关电源电路设计
    此线路是采用目前兼容很多国内品牌 IC 的回路,如: OB2535 、 CR6235. 1. RCD 吸收回路,即: R2,C4,D2,R6 PSR 线路设计需特别注意以下几处: 2. Vcc 供电和电压检测回路 , 即: D3,R3,R4,R10,C2 3. 输出回路 , 即: C3,C7,D5,R11,LED1 下面分别说明以上几点需注意的地方: 1. RCD 吸收回路,即: R2,C4,D2,R6 大家可以看出,此 RCD 回路比普通的 PWM 回路的 RCD 多了一个 R6 电阻,或许有人会忽略他的作用,但实际它对产品的稳定性起着很大的作用。 看下图VDS
[电源管理]
PSR原边反馈<font color='red'>开关电源</font>电路设计
并联开关电源储能电感的计算
计算并联式开关电源储能电感也是从流过储能电感的电流为临界连续电流状态着手进行分析。并联式开关电源中的储能电感与反转式串联开关电源中的储能电感工作原理基本一样,都是在控制开关K关断期间才产生反电动势向负载提供能量,因此,流过负载的电流只有流过储能电感电流的四分之一。 根据(1-45)式: iLm =Ui*Ton/L —— K关断前瞬间 (1-45) (1-45)式可以改写为: 4Io =Ui*T/2L —— K关断前瞬间 (1-53) 式中Io为流过负载的电流,当D = 0.5时,其大小等于最大电流iLm的四分之一;T为开关电源的工作周期,T正好等于2倍Ton。 由此求得: L =Ui*T/8Io —— D = 0.5时 (1-54
[电源管理]
并联<font color='red'>开关电源</font>储能电感的计算
一款机顶盒开关电源电路图
  数字有线电视机顶盒中的开关电源电路如图所示。从图可见,它主要是由交流输入电路、整流滤波电路、开关振荡电路、开关变压器T602、次级整流滤波和稳压电路等构成的。   (l)交流输入电路   交流输入电路是由熔断器F601、互感滤波器T601.滤波电容器C601、C603、C604等构成的。其功能是滤除交流输入信号中的脉冲干扰。   (2)整流滤波电路   交流220V电压经滤波后由桥式整流堆D601、整流和滤波电容器C605,滤波、桥式整流电路输出的约300V直流电压送到开关变压器T602④脚。   (3)开关振荡电路   开关振荡电路主要是由JC601和外围电路等构成的。振荡电路、稳压控制电路和开关
[电源管理]
高效率70W通用开关电源模块
TOPSwitch-GX 适合制作成本、高效率、小尺寸、全密封式开关电源模块或电源适配器。由TOP249Y构成的密封式70W通用开关电源模块,电路如图所示。当环境温度不超过40度时,模块的外形尺寸可减小到10.5CM*5.6CM*2.5CM。设计的交流输入电压范围是85V~265V,这属于全世界通用的电源范围。该电源同时实现输入欠电压保护、过电压保护、从外部设定极限电流、降低最大占空比等功能,其主要技术指标为:额定输出功率PO=70;负载调整率SR=正负4%;电源效率N大于或等于84%(当交流输入电压U=85V时,满载效率可达85%;当U=230V时,电源效率高达90%);U=230V时的空载功率损耗 0.52W;输出纹波电压
[电源管理]
高效率70W通用<font color='red'>开关电源</font>模块
开关电源EMC设计中电容特性的分析
      许多电子设计者都知道滤波电容在电源中起的作用,但在开关电源输出端用的滤波电容上,与工频电路中选用的滤波电容并不一样,在工频电路中用作滤波的普通电解电容器,其上的脉动电压频率仅有100 赫兹,充放电时间是毫秒数量级,为获得较小的脉动系数,需要的电容量高达数十万微法,因而一般低频用普通铝电解电容器制造,目标是以提高电容量为主,电容器的电容量、损耗角正切值以及漏电流是鉴别其优劣的主要参数。   在开关稳压电源中作为输出滤波用的电解电容器,其上锯齿波电压的频率高达数十千赫,甚至数十兆赫,它的要求和低频应用时不同,电容量并不是主要指标,衡量它好坏的则是它的阻抗一频率特性,要求它在开关稳压电源的工作频段内要有低的阻抗,同时,对于电源
[电源管理]
开关电源原理与设计(连载八)并联式开关电源的工作原理
1-4-1.并联式开关电源的工作原理 图1-11-a是并联式开关电源的最简单工作原理图,图1-11-b是并联式开关电源输出电压的波形。图1-11-a中Ui是开关电源的工作电压,L是储能电感,K是控制开关,R是负载。图1-11-b中Ui是开关电源的输入电压,Uo是开关电源输出的电压,Up是开关电源输出的峰值电压,Ua是开关电源输出的平均电压。     当控制开关K接通时,输入电源Ui开始对储能电感L加电,流过储能电感L的电流开始增加,同时电流在储能电感中也要产生磁场;当控制开关K由接通转为关断的时候,储能电感会产生反电动势,反电动势产生电流的方向与原来电流的方向相同,因此,在负载上会产生很高的电压。 在Ton期间,控制开关K
[电源管理]
<font color='red'>开关电源</font>原理与设计(连载八)并联式<font color='red'>开关电源</font>的工作原理
小广播
最新电源管理文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved