如何设计5V高电压锂离子电池

最新更新时间:2013-04-26来源: 电子发烧友关键字:高电压  锂离子电池 手机看文章 扫描二维码
随时随地手机看文章

  1 前言

  锂离子电池作为一种可多次重复充放电的能量储存技术,在过去20年来取得了非常重要的成功应用,尤其是作为各种可移动电子设备的动力源,促进了通信、电子等工业的蓬勃发展。如今,世界各国都努力试图将锂离子电池应用到汽车等运输工具中,以提供动力。丰田,福特等公司已经开发了多款混合动力源汽车,以减少汽油的使用。例如,丰田的Toyota Pirus混合动力汽车,因为使用锂离子电池作为辅助动力,每加仑汽油可行驶约50英里。现在,各国、各公司也都在大力投资试图率先开发出可靠安全的,唯一使用锂离子电池作为动力源的电动汽车。使用锂离子电池作为单一的动力源,要求锂离子电池能够储存/释放更高的能量、更长的重复充放电寿命、并且安全可靠。IBM发起的电池500项目,旨在开发出单次充电可行驶500英里(800km)的电池,即要求电池的能量容量约为125kWh[1]。这些应用也对电池材料提出了更高的要求,尤其是电池的阴极(正极)材料。相对于电池的负极(阳极)材料,阴极材料的容量普遍更低。石墨作为阳极材料容量接近约400 mAh/g,而广泛商用的阴极材料LiCoO2只有约140 mAh/g的可利用充放电容量,LiFePO4约160 mAh/g。电池的能量密度约为电池放电电压和容量的乘积,因此,除提高阴极材料容量外,提高阴极材料相对于Li/Li+电极的电势,是另一个提高电池能量密度的有效途径。LiCoO2相对Li/Li+电极的放电电压约为4V,若与5V相同容量的阴极材料相比,电池能量密度可提高约25%。因此,近来5V 高电压阴极材料的研究开发,也取得了众多研究者越来越多的关注。具有类尖晶石晶体结构的LiNi0.5Mn1.5O4、和类橄榄石晶体结构的 LiMPO4(M=Co,Ni)的两类材料为最有开发潜力的5V高电压阴极材料。本文将系统地阐述5V高电压阴极材料所面临的问题,以及取得的最新进展。

  2 5V高电压阴极材料面临的问题

  

  图 1(a)示意地说明了电池热力学稳态时阴极、阳极和电解液的电子能级。以Li/Li+电极为参比电位,μA为阳极材料的相对电化学势,μC为阴极材料的电化学势,电解液电势窗口Eg为电解液最低电子未占能级和最高电子占有能级之差。以阴极和阳极组成电池时,μC和μA的差为电池的开路电压。当阳极和阴极的电化学势在电解液的最低电子未占能级和最高电子占有能级之间时,电解液能很好的工作。但当阳极材料的电化学势高于最低电子未占能级时,阳极材料的电子会被电解液夺取,因而电解液被氧化,反应产物在阳极材料颗粒表面形成固液界面层;类似地,当阴极材料的电化学势低于最高电子占有能级时,电解液中的电子被阴极材料取得,从而氧化电解液,在阴极颗粒表面形成固液界面层。但是,当阴阳极电化学势略在Eg范围之外时,一些固液界面层能阻挡电子在电解液和阴(阳)极间的进一步输运,从而阻止进一步的反应,保护电极材料。例如,石墨相对Li/Li+电极的电化学势约为0.2V,在电解液(1M LiPF6 溶于EC:DEC)的电势窗口Eg范围之外(1 V~4.5V)。但是,因为EC能形成保护性的固液界面层,从而使得电解液不被进一步还原,所以石墨能成功应用为锂电池的阳极材料。现在商用的有机电解液为1M LiPF6溶于EC:DEC或EC:DMC,其电势窗口Eg范围约为1V~ 4.5V。然而,5V高电压阴极材料已经接近或者超出了现在商用有机电解液的电势窗口,因而电解液在充放电过程中极易被氧化,形成固液界面层,随着充放电循环次数的增加,容量大大降低,循环寿命减小。图1(b)示意的说明了一些电极材料的充放电电势与商用有机电解液电势窗口Eg的相对关系[2]。类尖晶石晶体结构LiNi0.5Mn1.5O4和类橄榄石晶体结构LiCoPO4的电势接近甚至超出Eg。因此,寻找与LiNi0.5Mn1.5O4和 LiCoPO4相匹配的电解液,或者对其保护性表面改性开发成为现今改进5V高压阴极材料主要的研究途径。

  图1 电解液电势窗口与电极活性材料氧化还原势的相对关系。(a)电解液电化学势窗口示意图。(b)常用电极材料电势与有机电解液(1M LiPF6 溶于EC:DEC)的电化学势窗口间的相对关系[2]。

  3 5V高电压阴极材料研究进展

  在类尖晶石结构的LiMn2O4中掺杂阳离子(Fe,Co,Ni等)可提高电势,在4V和5V左右会分别出现两个放电平台[3]。这些掺杂体系中,LiNi0.5Mn1.5O4具有约4.7V的放电电势和约130mAh/g的容量(理论容量达147 mAh/g)[4],最具开发潜力。而和LiFePO4具有相似结构的LiCoPO4和LiNiPO4,分别具有4.8V,和5.2V的放电电势,且理论容量都接近170 mAh/g[5],因而也受到了很多的关注。

  3.1 LiNi0.5Mn1.5O4

  3.1.1 掺杂

  在 LiNi0.5Mn1.5O4中掺杂阳离子或者阴离子是提高LiNi0.5Mn1.5O4化学稳定性,进而提高循环充放电性能的有效途径。加入的微量替换离子能在颗粒表面聚集,减少表面的反应活性更高的Ni离子,从而减少表面的有害反应并抑制固液界面的形成,因此提高LiNi0.5Mn1.5O4的快速充放电性能和循环稳定性。

  Ooms等人[6]发现,掺杂Mg能提高LiNi0.5Mn1.5O4的结构稳定性。通过溶胶-凝胶法和固态反应制备的LiMgxNi0.5-xMn1.5O4(x《0.1),在0.1C速率下充放电容量接近理论值(大于120 mAh/g)。Locati等人[7]制备的纳米级LiMg0.05Ni0.45Mn1.5O4,在室温下具有约10-6 S/cm的电导率,从而具有良好的快速充放电性能,0.1C速率下容量为131 mAh/g,1C速率下容量为117 mAh/g。

  Liu等人[8]制备了掺杂不同含量Fe的LiMn1.5Ni0.42Fe0.08O4,LiMn1.42Ni0.42Fe0.16O4,和 LiMn1.5Ni0.34Fe0.16O4。未掺杂LiNi0.5Mn1.5O4的在C/6速率下容量为?130 mAh/g,循环50次后容量保持为92%;而掺杂Fe的LiMn1.5Ni0.42Fe0.08O4,LiMn1.42Ni0.42Fe0.16O4,和 LiMn1.5Ni0.34Fe0.16O4容量分别为136,131,和127 mAh/g,且100次循环后容量仍保留100%。电化学阻抗谱(EIS)显示掺杂Fe后,表面阻抗降低;X射线光电子能谱(XPS)显示表面的Fe含量高于芯部,而表面的Ni含量低于芯部,Fe相比于Ni具有更低的反应活性,因而抑制了有害反应和固液界面层的形成。

  Co也是报道较多的一种有效掺杂元素[9-12]。Oh等人[11]制备了Co掺杂Li[Ni0.5Co0.05Mn1.45]O4,其放电容量在5C速率时达118 mAh/g,10C速率时为103 mAh/g;而未掺杂在5C和10C速率下放电容量仅分别为100 mAh/g和10 mAh/g。

  掺杂Cr也能有效地提高LiNi0.5Mn1.5O4的电化学性能。Liu等人[13]用溶胶凝胶法制备LiCr0.1Ni0.4Mn1.5O4,并获得更好的高速充放电性能和循环性能。Arunkumar等人[14]制备的LiMn1.5-0.5yNi0.5-yCryO4在4.2-5V容量为128 mAh/g,且50次循环后保留98%的容量,均高于未掺杂的LiNi0.5Mn1.5O4(118 mAh/g,50次循环后容量保留92%)。最近,Aklalouch等人[15]制备的650 纳米大小的单晶LiMn1.4Ni0.4Cr0.2O4在1C的速率下容量可达142 mAh/g,高达60C的速率下25oC温度下放电容量仍可达到131 mAh/g,55℃时容量为123 mAh/g,且55℃下循环50次循环后容量保留98.7%。

  Ti[16-18]和Ru[19]也被发现可提高的高速充放电性能和循环性能。Kim等人[17]发现掺杂Ti能提高充放电电压、提高锂离子扩散速率、并获得更好的高速充放电性能。Wang等人[19]制备的Ru掺杂 Li1.1Ni0.35Ru0.05Mn1.5O4和LiNi0.4Ru0.05Mn1.5O4比未掺杂LiNi0.5Mn1.5O4具有更好的高速充放电性能和循环性能。Li1.1Ni0.35Ru0.05Mn1.5O4和LiNi0.4Ru0.05Mn1.5O4在10 C的放电容量分别为108 mAh/g和117 mAh/g,且500次循环后仍能分别保留91%和84%的容量。

  除了掺杂上述阳离子替代部分Ni或者Mn之外,掺杂氟离子以替代部分氧离子也可大大提高LiNi0.5Mn1.5O4的电化学性能[20-22]。在电解液中由于微量HF的存在而与电极材料发生反应,溶解部分Ni或者Mn离子,恶化电化学性能,而掺杂氟离子则可有效的抑制这种破坏反应。Xu等人[22]制备的掺杂氟 LiNi0.5Mn1.5O3.975F0.05在3.5V-5.2V间充放电容量为140 mAh/g,高于未掺杂的130 mAh/g,且40次循环后容量保留为95%。

  3.1.2 涂层

  由于 LiNi0.5Mn1.5O4具有的高充放电电压,其与电解液之间发生的反应会氧化电解液形成固液界面层,同时电解液中的HF会溶解部分Ni和Mn离子,从而使得电极材料的充放电容量下降,循环性能恶化。表面改性或表面涂层是研究较多的一种改善活性材料性能的有效手段。在活性材料颗粒表面形成氧化物(MOx)或者金属磷酸物(MxPO4),能有效的一方面能提供一层物理阻碍膜避免电解液与活性颗粒的直接接触;另一方面氧化物能与电解液中的HF发生反应而消耗掉HF,减少HF对活性颗粒的攻击。金属氧化物涂层ZnO[23-24],ZrO2[25],Al2O3[26]等能有效的提高 LiNi0.5Mn1.5O4的电化学性能。表面具有ZnO涂层的LiNi0.5Mn1.5O4容量达到137 mAh/g,且在55℃温度下50次循环后几乎没有容量的下降[23]。Liu等人[26]在LiMn1.42Ni0.42Co0.16O4表面分别涂覆较均匀的约10 nm厚度的Al2O3,Bi2O3,ZnO,AlPO4,均能大大提高快速充放电性能和循环充放电性能。由于电解液中微量水分的存在而提供H+形成 HF,HF与活性颗粒的反应会进一步的产生水分,从而使性能大大恶化,而氧化物的涂层能消耗HF且抑制固液界面层的形成,从而提高性能。 Li3PO4[27]也被报道能提高LiNi0.5Mn1.5O4的高速充放电性能和循环性能。Li3PO4除了作为物理保护膜外,本身即是固液界面层,因而提高了LiNi0.5Mn1.5O4的电化学性能。

  使用涂层改进活性颗粒的电化学性能也有局限之处。一方面,表面涂层增加了活性材料制备的工序,从而增加了电极材料制备的成本;另一方面,很难在亚微米级或者甚至纳米级的活性颗粒表面形成均匀的完全覆盖的保护性表面涂层。相比而言,掺杂手段则更容易制备且不引进复杂的制备工序。

  3.2 LiMPO4(M= Co,Ni)

  类橄榄石晶体结构的LiMPO4(M= Co,Ni),也是一类极具开发潜力的高电压电极材料。LiNiPO4具有最高的充放电电压,约为~5.2V,但目前还尚未开发出能与之匹配的电解液,因而还未见LiNiPO4在5.2 V充放电的电化学性能的相关报道。Manickam等人[28]使用LiOH水溶液作为电解液,Hg/HgO作为参比电极,Sn作为反电极,从而在较低电势下(对比Sn在~1.5V充电,~0.5放电)得出了LiNiPO4的充放电曲线。

  LiCoPO4 具有4.8V的充放电电压,具有相对较多的研究报道。尽管在目前的通用电解液体系下能得出LiCoPO4的电化学性能,但其循环充放电性能极差。与 LiNi0.5Mn1.5O4相似,在高电压下充放电会使得LiCoPO4与电解液发生反应,形成固液界面层,并部分溶解Co离子,大大恶化其循环充放电性能。同时,类橄榄石晶体结构具有极低的电导性能,因而其快速充放电性能也很差。与LiFePO4相似,纳米化、掺杂、和非晶碳涂层是三种提高其性能的手段。纳米级的小颗粒相比微米大颗粒,具有更短的锂离子和电子传输扩散路径,且具有更大的比表面积。掺杂阳离子则能提高其电导性。非晶碳涂层能形成相互连接的电子高速传输通道,从而提高性能。

  Sun等人[29]制备出Co(OH)2,再进行固态反应制备出200nm~400nm左右的具有非晶碳表面涂层的LiCoPO4,其在0.2C的速率下第一次放电容量为108.9 mAh/g。Li等人[30]用微波加热反应的办法制备出约150nm大小的具有非晶碳涂层的纳米LiCoPO4颗粒,在3V~5.1 V间首次放电容量达144 mAh/g,30次循环后容量仍未72.6 mAh/g,而无非晶碳涂层的LiCoPO4容量分别仅为93.3 mAh/g和19.4 mAh/g。Wang等人[31]利用热水法制备出刺猬状的具有非晶碳涂层的LiCoPO4,约20nm直径的LiCoPO4纳米线自组装成球状颗粒,首次放电容量达136 mAh/g,且50次循环后保留有约91%的容量。Liu等人[32]用喷射热解法制备出中空的具有非晶碳涂层的球状LiCoPO4颗粒,颗粒大小约70nm,在0.1C速率下放电容量为123 mAh/g,20次循环后保留有97%的容量。

  除纳米化和碳涂层外,研究者也试图利用掺杂、使用电解液添加剂等办法提高LiCoPO4的电化学性能。Jang等人[33]制备掺杂Fe的Li1.02(Co0.9Fe0.1)0.98PO4,并进一步在其表面制备LiFePO4涂层,首次放电容量为122 mAh/g,且20次后容量保留70%。Allen等人[34]制备出掺杂有Fe的Li0.92Co0.8Fe0.2PO4,并在电解液中添加1% HFiP,在2.5V~5.3 V间充放电循环10次后容量保留100%,循环500次后容量仍保留80%。Sharabi等[35]使用具有SiO2的分隔层,获得了较好的循环性能。可能的原因为分隔层中SiO2能消耗电解液中的微量HF,从而提高循环性能。Xie[36]等人尝试用固态Li1+x+yAlxTi2-xSiyP3- yO12 (LATSP)作为电解液和分隔层,在LATSP上沉积一层LiCoPO4薄膜,且获得了电化学性能。尽管固态LATSP具有很高的电化学势窗口,但其 Li离子扩散系数很低,且不能与活性材料颗粒具有很好的接触,所以使用其作为电解液材料还需要进一步的实验开发。

  4 展望

  总的来讲,5V高电压阴极材料因其更高的能量密度,具有更大的开发潜力和市场前景,尤其是在需要提供高电压高能量的应用中,例如对于电动汽车电池,高电压阴极材料意味着串联更少的单电池、更小的总电池体积和更轻的电池质量、以及更高的能量。随着近些年来不断的研究提高,5V高电压阴极材料会在不久的几年内进入市场,尤其是具有类尖晶石结构的LiMn1.5Ni0.5O4,兼具高电压和良好的循环性能。然而对于类橄榄石结构的LiMPO4(M=Co,Ni),尽管具有更高的理论容量,但其循环性能仍需要极大的提高才能有好的应用前景。

关键字:高电压  锂离子电池 编辑:探路者 引用地址:如何设计5V高电压锂离子电池

上一篇:全方位了解IGBT的基础知识
下一篇:浅谈如何实现开关频率控制、负载和线路电压优化

推荐阅读最新更新时间:2023-10-17 15:18

技术文章—CS5086 5V USB输入两节锂电池平衡充电管理方案
随着两节锂电串联的应用普及,两节锂电充电管理芯片的出货量也越来越大,传统的降压型充电管理方案需要配置9V适配器,给厂家增加额外的生产成本。另外由于两节锂电池的个体差异、温度差异等原因造成电池端电压不平衡,导致电压低的那节电池充满后另外一节无法充电,影响电池的充放电次数,缩短电池使用寿命。 有鉴于此,深圳市永阜康科技有限公司现在力推带均衡功能两节锂电池升压充电管理IC-CS5086,实现USB对两节锂电池均衡充电,无需传统的9V专用适配器,高达90%的效率,最大1.5A的充电电流。 概要 CS5086E是一款5V USB输入,支持双节串联锂电池/锂离子电池的升压充电管理IC。同时集成有NTC功能和电池自动电量均衡功能,
[电源管理]
技术文章—CS5086 <font color='red'>5V</font> USB输入两节锂电池平衡充电管理方案
MAX44246高电压应用的高精度,低噪声运算放大器
MAX44246是一个36V,超高精度,低噪声,低漂移,双运算放大器,可提供接近零直流偏移和漂移通过使用专利斩波稳定和自动调零技术。此方法不断地测量和补偿的输入偏移量,消除了时间和温度漂移和1 / f噪声的影响。这种双通道器件具有轨至轨输出,从一个单一的2.7V至36V的电源,每通道仅消耗0.42毫安,只有9nV / 输入参考电压噪声。   IC是单位增益稳定的增益带宽积为5MHz。具有优良的规范,如5μV(最大值)的失调电压,漂移为20nV /°C(最大值),117nV PP噪音在0.1Hz至10Hz,非常适合需要超低噪声和DC精度等的应用的IC作为连接压力传感器,应变计,精密体重秤,医疗器械。   该IC采用8引
[模拟电子]
MAX44246<font color='red'>高电压</font>应用的高精度,低噪声运算放大器
锂离子电池充电器LTC4062及其应用
近年来,手机、数码相机、MP3等便携式产品向体积小、厚度薄、重量轻方向发展,新产品推陈出新,产量也猛增。这些新产品中无不采用锂离子(或聚合物)电池,因为它能满足小、薄、轻的要求,并且容量大,能延长两次充电的时间间隔。与此同时,各厂商也开发出各种新型充电器,与产品进行配套销售。为争夺充电器市场的份额,各导体厂商开发许多性能优良、设计灵活、应用方便的充电器芯片,应用到各种新型充电器当中。 凌特公司推出的单节锂离子电池充电器LTC4062应用灵活,可满足不同容量的锂离子电池的需要,也能采用插头式电源及USB端口进行充电,为充电器设计工程师提供了一个很好的选择。   特点及应用范围 LTC4062是一种充单节锂离子电池的线
[应用]
A123在锂离子电池技术研发方面取得突破性进展
A123系统公司近日宣布,其已在锂离子电池技术研发方面取得突破性进展。 A123研发出的新科技为纳米磷酸盐EXT,该技术可以使锂电池在极端的温度条件下运作,并且可以减少使用甚至不需要使用加热或者冷却系统。 目前该项新科技正在测试中,一旦通过高温以及低温测试,纳米磷酸盐EXT技术将成为电池行业的一大突破,有助于实现交通电气化。 A123表示,纳米磷酸盐EXT技术可大幅提升锂离子发动机起动电池的冷起动能力,优势大于铅酸起动电池。 减少使用或者完全不使用电动车电池组中的加热或冷却系统,不仅可以减轻重量、提高可靠性而且可以有效降低成本。 A123计划在2013年上半年将纳米磷酸盐EXT技术运用于20安的棱柱状电池中。
[嵌入式]
构成大功率反相-5V电源的降压型稳压器的设计
  将降压型开关转换器IC配置成反相器,便可获得一个高效大功率-5V电源,其输出电流在输入电压为12V时高达4.5A,在输入电压为5V时为3.2A(图1)。     图1,只要把这一大功率直流/直流降压型变换器接成反相器,你就可以在输入电压为12V时获得4.5A的输出电流和-5V输出电压,或者在输入电压为5V时获得3.2A的输出电流和-5V输出电压。   常见的反相电源用一个p沟道MOSFET进行开关切换(图2)。这种电路配置在输出电流很小时能运转正常,但在输出电流超过2A左右时,其使用受到限制,这要视输入、输出电压电平和你使用的MOSFET而定。如果将一个标准降压电路与图1所示电路进行比较,你就会看到,图1所
[电源管理]
构成大功率反相-<font color='red'>5V</font>电源的降压型稳压器的设计
高电压CMOS放大器利用单个IC实现高阻抗检测实验
引言 电压的准确测量需要尽量减小至被测试电路之仪器接线的影响。典型的数字电压表(DVM)采用10M电阻器网络以把负载效应保持在不显眼的水平,即使这会引起显著的误差,尤其是在包含高电阻的较 高电压 电路中。 解决方案是采用静电计配置的高阻抗 放大器 ,因此来自测试节点的放大器输入电流就微乎其微。为使输入电流值尽可能低,传统上都把场效应晶体管(FET)用在 这些电路的输入端。FET一般是低电压器件,并会引起难以消除的电压失调不确定性。虽然具有包括FET输入的单片式放大器,但它们通常是非常低电压的器件 (特别是那些采用典型CMOS制作方法的放大器),因此其适用范围局限在高电压应用。可以考虑一下LTC6090,这是一款精度在mV以
[电源管理]
对<font color='red'>高电压</font>CMOS放大器利用单个IC实现高阻抗检测实验
Pure EV推出人工智能技术 可自动修复锂离子电池
据外媒报道,由印度理工学院海得拉巴分校(IIT-H)孵化的城市初创公司PurEnergy旗下的 电动汽车 垂直企业Pure EV开发了BaTrics Faraday硬件,可以在人工智能基础上,自动诊断和修复电动汽车锂离子电池故障。 (图片来源:autocapro) 有了BaTrics Faraday,用户不必再去售后服务中心修复有故障的电池。Pure EV创始人Nishanth Donari教授表示:“Pure EV开发出由人工智能驱动的硬件,通过与电池连接的外部设备,诊断和解决电池故障。这样可以节省时间,不必拆卸和安装电池,并缩短电池周转期。” 在 电动汽车 中,锂离子电池是最关键的部件,通过串并联焊接在一起,可
[汽车电子]
Pure EV推出人工智能技术 可自动修复<font color='red'>锂离子电池</font>
低功耗待机的高电压电流模式降压型转换器
电池供电型系统通常都伴随着低功耗待机要求。例如汽车系统往往要求电源即使在无负载条件下也能够保持输出电压调节,并消耗极小的静态电流,以延长电池的使用寿命。然而,不断上涨的能源成本增加了人们对交流供电型系统(比如用于家庭和企业的小型插入式电器)实现低电流待机操作的需求。 在那些需要高输入电压和巨大负载电流的系统中,设计一个可在轻负载条件下具有高效率的电源尤其困难。在此类高功率系统中,一种常用的方法是增设一条用于低电流操作的辅助电源路径,这种做法有可能显著地增加电源的成本、板级空间和复杂性。 采用LT3800作为单电源同步DC/DC转换器的核心是一种更加优越的解决方案。由此形成的电源简单而高效。基于LT3800的转换器所需的外
[应用]
小广播
最新电源管理文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved