IGBT基础知识梳理

最新更新时间:2013-05-16来源: OFWEEK电子工程网关键字:IGBT  基础知识 手机看文章 扫描二维码
随时随地手机看文章

  有关IGBT你了解多少,IGBT(Insulated Gate Bipolar Transistor),绝缘栅双极型晶体管,是由BJT(双极型三极管)和MOS(绝缘栅型场效应管)组成的复合全控型电压驱动式功率半导体器件, 兼有MOSFET的高输入阻抗和GTR的低导通压降两方面的优点。GTR饱和压降低,载流密度大,但驱动电流较大;MOSFET驱动功率很小,开关速度快,但导通压降大,载流密度小。IGBT综合了以上两种器件的优点,驱动功率小而饱和压降低。非常适合应用于直流电压为600V及以上的变流系统如交流电机、变频器、开关电源、照明电路、牵引传动等领域。

  结构

  IGBT结构图左边所示为一个N沟道增强型绝缘栅双极晶体管结构, N+区称为源区,附于其上的电极称为源极。P+区称为漏区。器件的控制区为栅区,附于其上的电极称为栅极。沟道在紧靠栅区边界形成。在漏、源之间的P型区(包括P+和P-区)(沟道在该区域形成),称为亚沟道区(Subchannel region)。而在漏区另一侧的P+区称为漏注入区(Drain injector),它是IGBT特有的功能区,与漏区和亚沟道区一起形成PNP双极晶体管,起发射极的作用,向漏极注入空穴,进行导电调制,以降低器件的通态电压。附于漏注入区上的电极称为漏极。

  IGBT的开关作用是通过加正向栅极电压形成沟道,给PNP(原来为NPN)晶体管提供基极电流,使IGBT导通。反之,加反向门极电压消除沟道,切断基极电流,使IGBT关断。IGBT的驱动方法和MOSFET基本相同,只需控制输入极N-沟道MOSFET,所以具有高输入阻抗特性。当MOSFET的沟道形成后,从P+基极注入到N-层的空穴(少子),对N-层进行电导调制,减小N-层的电阻,使IGBT在高电压时,也具有低的通态电压。

  工作特性

  IGBT 的静态特性主要有伏安特性、转移特性和开关特性。

  IGBT 的伏安特性是指以栅源电压Ugs 为参变量时,漏极电流与栅极电压之间的关系曲线。输出漏极电流比受栅源电压Ugs 的控制,Ugs 越高, Id 越大。它与GTR 的输出特性相似.也可分为饱和区1 、放大区2 和击穿特性3 部分。在截止状态下的IGBT ,正向电压由J2 结承担,反向电压由J1结承担。如果无N+ 缓冲区,则正反向阻断电压可以做到同样水平,加入N+缓冲区后,反向关断电压只能达到几十伏水平,因此限制了IGBT 的某些应用范围。

  IGBT 的转移特性是指输出漏极电流Id 与栅源电压Ugs 之间的关系曲线。它与MOSFET 的转移特性相同,当栅源电压小于开启电压Ugs(th) 时,IGBT 处于关断状态。在IGBT 导通后的大部分漏极电流范围内, Id 与Ugs呈线性关系。最高栅源电压受最大漏极电流限制,其最佳值一般取为15V左右。

  IGBT 的开关特性是指漏极电流与漏源电压之间的关系。IGBT 处于导通态时,由于它的PNP 晶体管为宽基区晶体管,所以其B 值极低。尽管等效电路为达林顿结构,但流过MOSFET 的电流成为IGBT 总电流的主要部分。此时,通态电压Uds(on) 可用下式表示

  Uds(on) = Uj1 + Udr + IdRoh

  式中Uj1 —— JI 结的正向电压,其值为0.7 ~1V ;Udr ——扩展电阻Rdr 上的压降;Roh ——沟道电阻。

  通态电流Ids 可用下式表示:

  Ids=(1+Bpnp)Imos

  式中Imos ——流过MOSFET 的电流。

  由于N+ 区存在电导调制效应,所以IGBT 的通态压降小,耐压1000V的IGBT 通态压降为2 ~ 3V 。IGBT 处于断态时,只有很小的泄漏电流存在。

  动态特性

  IGBT 在开通过程中,大部分时间是作为MOSFET 来运行的,只是在漏源电压Uds 下降过程后期, PNP 晶体管由放大区至饱和,又增加了一段延迟时间。td(on) 为开通延迟时间, tri 为电流上升时间。实际应用中常给出的漏极电流开通时间ton 即为td (on) tri 之和。漏源电压的下降时间由tfe1 和tfe2 组成。

  IGBT的触发和关断要求给其栅极和基极之间加上正向电压和负向电压,栅极电压可由不同的驱动电路产生。当选择这些驱动电路时,必须基于以下的参数来进行:器件关断偏置的要求、栅极电荷的要求、耐固性要求和电源的情况。因为IGBT栅极- 发射极阻抗大,故可使用MOSFET驱动技术进行触发,不过由于IGBT的输入电容较MOSFET为大,故IGBT的关断偏压应该比许多MOSFET驱动电路提供的偏压更高。

  IGBT在关断过程中,漏极电流的波形变为两段。因为MOSFET关断后,PNP晶体管的存储电荷难以迅速消除,造成漏极电流较长的尾部时间,td(off)为关断延迟时间,trv为电压Uds(f)的上升时间。实际应用中常常给出的漏极电流的下降时间Tf由图中的t(f1)和t(f2)两段组成,而漏极电流的关断时间

  t(off)=td(off)+trv十t(f)

  式中,td(off)与trv之和又称为存储时间。

  IGBT的开关速度低于MOSFET,但明显高于GTR。IGBT在关断时不需要负栅压来减少关断时间,但关断时间随栅极和发射极并联电阻的增加而增加。IGBT的开启电压约3~4V,和MOSFET相当。IGBT导通时的饱和压降比MOSFET低而和GTR接近,饱和压降随栅极电压的增加而降低。

  正式商用的IGBT器件的电压和电流容量还很有限,远远不能满足电力电子应用技术发展的需求;高压领域的许多应用中,要求器件的电压等级达到10KV以上,目前只能通过IGBT高压串联等技术来实现高压应用。国外的一些厂家如瑞士ABB公司采用软穿通原则研制出了8KV的IGBT器件,德国的EUPEC生产的6500V/600A高压大功率IGBT器件已经获得实际应用,日本东芝也已涉足该领域。与此同时,各大半导体生产厂商不断开发IGBT的高耐压、大电流、高速、低饱和压降、高可靠性、低成本技术,主要采用1um以下制作工艺,研制开发取得一些新进展。

  IGBT 原理

  方法

  IGBT是强电流、高压应用和快速终端设备用垂直功率MOSFET的自然进化。由于实现一个较高的击穿电压BVDSS需要一个源漏通道,而这个通道却具有很高的电阻率,因而造成功率MOSFET具有RDS(on)数值高的特征,IGBT消除了现有功率MOSFET的这些主要缺点。虽然最新一代功率MOSFET 器件大幅度改进了RDS(on)特性,但是在高电平时,功率导通损耗仍然要比IGBT 技术高出很多。较低的压降,转换成一个低VCE(sat)的能力,以及IGBT的结构,同一个标准双极器件相比,可支持更高电流密度,并简化IGBT驱动器的原理图。

  导通

  IGBT硅片的结构与功率MOSFET 的结构十分相似,主要差异是IGBT增加了P+ 基片和一个N+ 缓冲层(NPT-非穿通-IGBT技术没有增加这个部分)。如等效电路图所示(图1),其中一个MOSFET驱动两个双极器件。基片的应用在管体的P+和 N+ 区之间创建了一个J1结。 当正栅偏压使栅极下面反演P基区时,一个N沟道形成,同时出现一个电子流,并完全按照功率 MOSFET的方式产生一股电流。如果这个电子流产生的电压在0.7V范围内,那么,J1将处于正向偏压,一些空穴注入N-区内,并调整阴阳极之间的电阻率,这种方式降低了功率导通的总损耗,并启动了第二个电荷流。最后的结果是,在半导体层次内临时出现两种不同的电流拓扑:一个电子流(MOSFET 电流); 空穴电流(双极)。

  关断

  当在栅极施加一个负偏压或栅压低于门限值时,沟道被禁止,没有空穴注入N-区内。在任何情况下,如果MOSFET电流在开关阶段迅速下降,集电极电流则逐渐降低,这是因为换向开始后,在N层内还存在少数的载流子(少子)。这种残余电流值(尾流)的降低,完全取决于关断时电荷的密度,而密度又与几种因素有关,如掺杂质的数量和拓扑,层次厚度和温度。少子的衰减使集电极电流具有特征尾流波形,集电极电流引起以下问题:功耗升高;交叉导通问题,特别是在使用续流二极管的设备上,问题更加明显。

  鉴于尾流与少子的重组有关,尾流的电流值应与芯片的温度、IC 和VCE密切相关的空穴移动性有密切的关系。因此,根据所达到的温度,降低这种作用在终端设备设计上的电流的不理想效应是可行的。

  阻断与闩锁

  当集电极被施加一个反向电压时, J1 就会受到反向偏压控制,耗尽层则会向N-区扩展。因过多地降低这个层面的厚度,将无法取得一个有效的阻断能力,所以,这个机制十分重要。另一方面,如果过大地增加这个区域尺寸,就会连续地提高压降。 第二点清楚地说明了NPT器件的压降比等效(IC 和速度相同) PT 器件的压降高的原因。

  当栅极和发射极短接并在集电极端子施加一个正电压时,P/N J3结受反向电压控制。此时,仍然是由N漂移区中的耗尽层承受外部施加的电压。

  IGBT在集电极与发射极之间有一个寄生PNPN晶闸管,如图1所示。在特殊条件下,这种寄生器件会导通。这种现象会使集电极与发射极之间的电流量增加,对等效MOSFET的控制能力降低,通常还会引起器件击穿问题。晶闸管导通现象被称为IGBT闩锁,具体地说,这种缺陷的原因互不相同,与器件的状态有密切关系。通常情况下,静态和动态闩锁有如下主要区别:

  当晶闸管全部导通时,静态闩锁出现。 只在关断时才会出现动态闩锁。这一特殊现象严重地限制了安全操作区 。 为防止寄生NPN和PNP晶体管的有害现象,有必要采取以下措施: 防止NPN部分接通,分别改变布局和掺杂级别。 降低NPN和PNP晶体管的总电流增益。 此外,闩锁电流对PNP和NPN器件的电流增益有一定的影响,因此,它与结温的关系也非常密切;在结温和增益提高的情况下,P基区的电阻率会升高,破坏了整体特性。因此,器件制造商必须注意将集电极最大电流值与闩锁电流之间保持一定的比例,通常比例为1:5。

关键字:IGBT  基础知识 编辑:探路者 引用地址:IGBT基础知识梳理

上一篇:全桥逆变软开关技术的发展
下一篇:薄膜电容器模组介绍及其在感应加热中的应用

推荐阅读最新更新时间:2023-10-17 15:43

IR全新1200V IGBT为电机驱动及不间断电源应用
全球功率半导体和管理方案领导厂商 – 国际整流器公司 (International Rectifier,简称IR) 推出坚固可靠的全新1200V超高速绝缘栅双极晶体管 (IGBT) 系列,针对工业电机驱动及不间断电源 (UPS) 应用进行了优化。 全新器件采用IR的场截止沟道超薄晶圆技术,可减少传导和开关损耗。该器件具有10us最小短路时间额定值,与具有低反向恢复电荷 (Qrr) 的软恢复二极管共同封装,为坚固的工业应用做出了有效优化。 IR亚太区销售副总裁潘大伟表示:“全新1200V沟道IGBT具有极低的Vce(on) 和低开关损耗,并带来更高的系统效率及稳固的瞬态效能,从而提高可靠性,使其非常适合恶劣的工业环境
[电源管理]
IGBT模块应用指南
  IGBT是绝缘栅双极型晶体管(IsolatedGateBipolarTransistor),它是八十年代初诞生,九十年代迅速发展起来的新型复合电力电子器件。IGBT将MOSFET与GTR的优点集于一身,既有输入阻抗高、速度快、热稳定性好、电压驱动型,又具有通态压降低、高电压、大电流的优点。因此,IGBT的新技术、新工艺不断有新的突破;应用频率硬开关5KHz~40KHz,软开关40KHz~150KHz;功率从五千瓦到几百千瓦的应用场合。IGBT器件将不断开拓新的应用领域,为高效节能、节材,为新能源、工业自动化(高频电焊机,高频超声波,逆变器,斩波器,UPS/EPS,感应加热)提供了新的商机。为了使初次使用者正确用好IGBT模块,
[电源管理]
一文看懂IGBT芯片是如何工作的
随着现代科技的发展,先进半导体芯片得到了越来越多的重视。其实,半导体芯片在生活中的应用场景有很多,主要有: 逻辑半导体——应用于电脑和各种移动终端中的核心计算芯片; 存储半导体——我们手机的RAM、ROM等; 以及功率半导体——广泛应用于汽车、高铁、电力行业的各种功率芯片,其中最著名的可能是IGBT。 IGBT这个词你可能从没听过,但它一直在我们身边默默服务。小到微波炉、变频空调、变频冰箱,大到新能源汽车、高铁,甚至航母的电磁弹射,IGBT都不可或缺。 作为半导体开关之一,IGBT是能量变换和传输的核心零件。常见的强电只有50Hz交流电,变压器只能改变它的电压。有了IGBT这种开关,就可以通过电路设计和计
[汽车电子]
一文看懂<font color='red'>IGBT</font>芯片是如何工作的
爆震传感器信号调节系统的基础知识及其设置方法
如果点火时间不正确或部件存在故障,发动机汽缸就会发生爆震。现代汽车在发动机上安装了爆震传感器系统,可最大限度减少爆震,进而可最大限度延长发动机使用寿命,提高功率并改善燃油效率。本文将讨论发动机爆震基础知识以及设置爆震传感器信号调节系统的方法。 发动机爆震基础知识 发动机爆震是指气缸中的燃料空气混合物非受控点燃,而不是由火花塞点燃。发动机爆震会显著增大汽缸压力,破坏发动机部件,导致发出一声“砰”响。 在正常燃烧状态下,内燃机以受控方式燃烧燃料空气混合物。燃烧应该在活塞通过正上方顶点之前启动几个曲轴角度。这种定时提前非常必要,因为燃料空气混合物完全燃烧需要一定时间,而且该时间随发动机速度及负载变化而变化。如果定时
[嵌入式]
IGBT
IGBT(Insulated Gate Bipolar Transistor),绝缘栅双极型晶体管,是由 BJT (双极型三极管)和MOS(绝缘栅型场效应管)组成的复合全控型电压驱动式功率半导体器件,兼有 MOSFET 的高输入阻抗和GTR的低导通压降两方面的优点。GTR饱和压降低,载流密度大,但驱动电流较大;MOSFET驱动功率很小,开关速度快,但导通压降大,载流密度小。IGBT综合了以上两种器件的优点,驱动功率小而饱和压降低。非常适合应用于 直流电压 为600V及以上的变流系统如 交流电机 、 变频器 、 开关电源 、照明电路、牵引传动等领域。 IGBT模块是由IGBT(绝缘栅双极型晶体管芯片)与FWD( 续流二极管
[电源管理]
<font color='red'>IGBT</font>
突破技术垄断 扬杰科技IGBT芯片和背面实现方法
近日,扬杰科技宣布,公司已开展“高频绝缘栅双极型晶体管”(IGBT)芯片的研发,会陆续推出适合高频开关应用(如焊机、感应加热和医疗仪器用电源)的高速IGBT模块。 功率半导体器件又称为电力电子器件,是电力电子装置实现电能转换,电路控制的核心器件。主要用途包括变频、整流、变压、功率放大和功率控制等,同时具有节能功效。功率半导体器件广泛应用于移动通讯、消费电子、新能源交通、轨道交通、工业控制以及发电与配电等电力电子领域。 功率半导体种类众多,以IGBT为代表的新型电力电子器件,在能源、交通、工业和消费电子等领域有着不可替代的核心作用。自从1988年第一代IGBT产品问世以来,目前已经进展到第六代产品,性能方面有显著的提升。 目前IGB
[手机便携]
突破技术垄断 扬杰科技<font color='red'>IGBT</font>芯片和背面实现方法
LED电子显示屏基础知识简介
1、发光管 发光管最主要的部分是发光管内的发光管芯的选用,目前中高档发光管管芯的生产厂家主要有***的日亚公司,丰田公司,美国的科瑞公司,惠普公司,德国的西门子公司,台湾的国联公司,鼎元公司和光磊公司,其中***美国及欧洲的公司主要以生产纯蓝纯绿发光管芯为主,而台湾公司则以生产红绿管管芯为主,从目前的实际应用及红绿色彩搭配看,一红四绿其中红管采用的是四元素的红,而绿管采用的是三元素的绿,在管芯的使用上建议采用红管管芯台湾国联公司的712SOL,绿管管芯采用台湾鼎元公司的113YGU。这种管芯的采用及搭配是目前双基色室内显示屏配置较高的一种。 另外还有2红有1纯绿的配置。(室外双色) 2、集成元器件
[电源管理]
SI新IGBT可降低关断能耗、缩小空间
2008 年 5 月 13 日 ,意法半导体推出一系列创新的绝缘栅双极晶体管( IGBT ),新系列产品采用高效的寿命控制工艺,有效降低关断期间的能耗。如果设计工程师采用 ST 的全新 IGBT (包括 STGxL6NC60D 600V PowerMESH™ ),用于工作频率超过 20kHz 的照明镇流器等节能型电路内,应用的整体功率可望提高到一个新的水平,远胜标准技术的 MOSFET 。 开关性能的改进容许设计工程师把 IGBT 用于以硬开关拓扑和谐振电路为特点的高度竞争力产品。新产品关断能耗降低,使用很小的缓冲电容器即可在低结温下工作,带来降低功
[新品]
小广播
最新电源管理文章
换一换 更多 相关热搜器件
随便看看
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved