数字激光告警系统探测接收前端设计

最新更新时间:2013-06-12来源: 与非网关键字:激光告警  激光武器  探测接收 手机看文章 扫描二维码
随时随地手机看文章
  激光技术经过几十年的发展,激光武器已从理论走向实践。激光武器的大量出现带来了日益严峻的威胁,激光告警设备对激光来袭的探测与预报是激光对抗的基本手段。如何从复杂的环境下探测判断激光来袭信号是告警系统面临的首要任务。随着数字技术的发展,处理速度的不断提高,采用数字技术如FPGA等来处理告警信号成为可能。

  文章针对数字激光告警系统而设计的探测接收前端,主要目的是探测一定波段的来袭激光信号,具有高的灵敏度,可探测的最小激光能量达到1μW,动态范围达到100 dB。设计中采用高灵敏度的激光探测二极管,得到激光来袭信号的脉冲电流,在最小脉冲作用下系统等效带宽400 MHz以上,通过大带宽、低噪运算放大器工作在跨导放大模式下进行放大和电流电压变换,再通过放大整形后得到数字电路能识别的脉冲信号,从而根据脉冲宽度判断来袭激光信号的强度等信息。由于窄脉冲对系统中的电容敏感,采用ADS仿真方式确定了各级电容的大小,仿真与测试结果显示接收前端具有高的探测灵敏度、大的动态范围、能为后处理的数字系统提供准确的来袭信号特性。系统提出的用宽带跨导运算放大电路代替传统的专用三极管来放大微弱窄脉冲的方式,具有带宽宽(500 MHz),成本低的特点,为放大微弱的ns级及以下的窄脉冲电流信号提供一个很好的宽带方案,同时系统结构简单,适应环境能力强,易于维护。

  1 探测接收前端方案设计与仿真

  根据后端数字系统要求,需要把来袭的激光信号通过光电探测二极管变换成数字系统能处理的数字脉冲。由于光电二极管在激光信号的作用下产生的是一个窄脉冲电流,选用的光敏二极管最小输出电流为10 nA的脉冲电流,脉冲宽度为10 ns,按照有效频率计算放大电路的频带需大于400 MHz,为满足这一要求采用500.MHz的大带宽的运算放大器担任放大作用,并完成电流与电压的转换,得到脉冲电压。由于在来袭信号较低时或过大时,脉冲信号都达不到数字信号需要的电压,需要进行的整形与放大,以期达到数字系统常规电压的标准(高电压5~3.3 V,低电压为2.1~0 V),系统中采用把接收信号一直放大到使其后级放大电路饱和的方法来实现数字电压整形。总体方案如图1所示,放大器后波形要求如图中每级后的图示;最后把光电管探测电流变成脉冲电压形式,脉冲宽度代表作用激光能量的大小。

  由于系统最小信号带宽很宽、脉冲电流微弱,对电路中电容元件敏感,为了得到具体的参数值,在ADS(Ad-vatreed Design System)软件中采用瞬态仿真方法进行系统仿真,图2为仿真电路拓扑图。根据系统最小检测要求以及光电管原理特征,在ADS软件中用脉冲电流源、电阻与电容并联模型代替实际的光电管在激光作用下产生脉冲电流的模型,如图3中所示的电路参数设置是采用最小的来袭激光能量1μW下光电管输出的电流为10nA,宽度为10 ns的电流脉冲,对应的端口电流仿真波形如图4所示。系统中放大器采用低噪声高增益带宽积(500 MHz)的运放实现放大,仿真了在来袭激光不同光能量作用下的系统输出波形,不同来袭激光的作用在仿真中采用激光探头光电管的模型中电流脉冲大小,电流脉冲宽度的变化来表示。结果如图5~图7所示。从结果可以看出该放大方式能得到数字脉冲,输出的脉冲宽度与来袭激光的功率成正比。系统不仅能判断出有无来袭激光,还可以计算出来袭激光能量大小。

  2 接收前端电路实现

  根据上述仿真结果,选用中电集团第44所生产的GD3561光电探测器为激光探测二极管,最小可检测能量1μw,最小响应时间2.5 ns。第一级采用形式跨导放大方式,器件与放大中间级均使用BB司的宽带、低噪声运放芯片OPA656,增益带宽积达到500 MHz,8 ns的电压建立时间,输入噪声18 nV/Hz;整形电路采用AD8611,具有4 ns极短的延迟时间,系统具体电路见图8。

  测试采用10 000 w的激光光源,波长为1.3μm,通过光学衰减器,衰减100 dB可以达到系统需要的最小功率1μw,输出端用高速示波器TDS460来捕捉输出的脉冲信号,结果见图9~图12。

  图9表示在1 μw的激光能量作用下,光电管两端的瞬时电压脉冲,可以看出,在最小功率作用下,产生的电压、电流脉冲时间短,峰值小;图10表示脉冲经过系统放大后的具有数字脉冲波形,满足数字电路来处理要求。图11为1 mW的作用结果,图12为1 w的能量作用结果。可见通过系统的放大后得到数字电路能辨识的矩形脉冲信号,信号到来的强弱与输出脉冲成正比。系统的动态范围达到100 dB。

  3 结 语

  测试结果表明,该探测接收前端具有最低可探测1μw的来袭激光信号,动态范围达到100 dB,产生的脉冲波形满足数字电路处理水平。能为后续的数字电路如FPGA电路提供准确的探测信号。系统采用宽带跨导运算放大电路方式放大微弱的窄脉冲信号,采用在ADs软件中仿真方式处理了窄脉冲对电容敏感的关键问题,为提供微弱窄脉冲电流信号放大提供很好的方案。放大系统具有500 MHz的带宽,可以放大的窄脉冲宽度可窄于ns级以下,同时价格低廉,性价比高。实际测试中,误报率低,探测速度快,探测接收前端产生的噪声低。系统设计结构简单,易于维护,不仅可用于激光来袭探测,也可用于激光安防系统等。

关键字:激光告警  激光武器  探测接收 编辑:探路者 引用地址:数字激光告警系统探测接收前端设计

上一篇:无刷直流电机相序测定实用方法
下一篇:一种用于高速ADC的采样保持电路的设计

推荐阅读最新更新时间:2023-10-17 15:44

可拦截二炮导弹:美国激光武器发展动向解读
    近日,美国海军计划今年夏天在一艘现役军舰上部署并测试首个固态激光武器系统,并将于两年内测试一种舰载电磁轨道炮。舆论认为,这将从根本上改变美国海军的作战方式。据悉,美国海军计划将这种固态激光武器系统部署在一艘奥斯汀级两栖船坞运输舰“庞塞号”上,然后将其派往波斯湾进行测试。该武器系统可单人操作,能够以超音速发射能量束打击并烧毁目标或破坏其电子系统,将主要被用于应对无人机、快艇和渔船群等所谓的“非对称威胁”。   激光武器离真正部署似乎只有一步之遥,更有人认为美军激光武器未来可能拦截中国二炮导弹。激光武器一时之间成为关注的焦点,其实世界上主要的国家一直都在大力开发激光武器,美国显然走在了前列。接下来OFweek激光网带你看美
[手机便携]
自动驾驶最强武器 解析Velodyne 128线激光雷达
    不久前,全球激光雷达领导企业Velodyne,发布了一款当今分辨率最好,探测距离最远的128线雷达——VLS-128,可以说这款产品是专为L5级别的自动驾驶而生,取代了目前64线雷达HDL-64的标杆地位,这无疑将行车安全与 自动驾驶 又向前推进了一步。                       最后,基于可大规模量产的半导体技术,VLS-128能在Velodyne的工厂中使用专有的激光对准和制造系统来自动组装,解决产能不足的问题。       这三项提升中最值得关注的是第一项,跳过多 传感器 数据融合步骤,采集原始数据直接运行算法,进行定位、物体检测和分类。用分辨率较低的激光雷达,需要先将其数据与摄
[嵌入式]
纪念激光诞生50年:从射线武器到聚变供能
当今应用广泛的激光已经诞生整整50年。今天激光已经成为互联网光纤骨干网的基础,可以帮助人们寻找新型清洁聚变能源,而激光仍显得是未来主义的。以下这组图片反映了激光从最初诞生到应用到各个领域的发展过程。    1. 激光的诞生 激光的诞生   1960年在加利福尼亚州马里布的休斯研究实验室,西奥多·梅曼(Theodore Maiman)设计和建造了一台小型的激光发生器。他将闪光灯线圈缠绕在指尖大小的红宝石棒上,产生了第一束激光,激光时代由此开启,从此和人们的生活息息相关。   梅曼的实验显示,闪光灯发出的足以致盲的强光可以使红宝石棒充能,这些能量随后以纯粹的红色光脉冲的形式释放,这些相干光有恒定的相位
[网络通信]
纪念<font color='red'>激光</font>诞生50年:从射线<font color='red'>武器</font>到聚变供能
小广播
最新电源管理文章
换一换 更多 相关热搜器件
更多每日新闻
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved