基于上述原因,在等精度测频法的基础上,这里给出一种基于CPLD的设计方案。同时配备多路程控精密放大来实现更宽范围内的信号测频。这种方案测频精度很高,对输入信号要求比较少,适合于很多需要测频的场合。
1 基于CPLD的数字逻辑器件实现
复杂可编程逻辑器件(Complex Programmable Logic DeVice,CPLD)是从PAL和GAL器件发展出来的,其规模大,结构复杂,属于大规模集成电路范围,是一种用户根据各自需要而自行构造逻辑功能的数字集成电路。
相对而言,用于测频的数字逻辑器件,如D触发器(74LS74)、与门(74LS04)、计数器(74LS393)等都是单片数字逻辑器件,不仅使用起来连接比较繁琐,而且不利于集成化,很难做到高速、高精度的频率测量。这么多数字器件构成一个系统,数字干扰将是一个很难处理的问题,这对模拟小信号的高精度测频将产生极大的影响。这里使用CPLD时,通过Verilog(硬件描述语言)对逻辑器件进行编程,可以很容易地在CPLD内部生成上述数字逻辑芯片,且性能更加优化。同时为CPLD配置高精度的40 MHz晶振(精度高达10-8),对系统高精度测频非常有利。又利用CPLD的高速、低噪特性,在处理小幅度模拟信号时,也降低了难度,减少对外围器件的干扰。
2 多路程控精密放大整形
测频时,输入信号,可以是三角波、正弦波或方波等周期性波形,频率范围为0.1 Hz~10 MHz,幅度在10 mV~5 V之间,处理这样的信号就要折衷考虑。
2.1 多路精密程控放大
小信号的处理至关重要,它很容易受到外界噪声的影响,会影响到测频的精度。这里经过对高性能的运放选择,选取TI公司生产的OPA637,它是一款Difet型高速精密运放,具有高共模抑制比、极低噪声,处理小信号非常合适。电路处理也要非常注意,运放的电源要经过充分去耦才能获得稳定的效果,而数字电路必须与模拟电路分开走线,分开供电。在处理噪声干扰的地线时,需要用到磁珠隔离等技术,这样小信号放大才有保障。
处理不同范围段的信号时,需要得到一个合适的信号处理范围,一路信号放大显然是不够的。需要考虑到采用多路程控放大,这里选择用模拟开关配合峰值检波器进行通道选择,现给出各通道放大倍数选择,如表1所示。
各通道信号放大时,除使用低噪高精度运放OPA637外,还配合使用视频放大器AD811,AD844等模拟芯片,均能发挥良好的效果。
2.2 分段整形设计
处理0.1 Hz~10 MHz的信号,得到稳定度比较高的方波信号,以便于下一级测频电路处理。方案中选择了双路比较器,两路比较器均接为滞回反馈型,利用反馈到参考端的信号构成正反馈,增强抗干扰能力。低频段选择LM311,主要将频率段在0.1 Hz~0.5 MHz的信号比较为方波,而高频段选择MAX913处理的频率段为0.5~10 MHz。其电路如图1所示。
3 等精度测频(相关计数测频)设计
等精度测量法就是人为设定一段时间,由被测信号的上升沿来控制闸门的开启和关闭,测量精度与被测信号频率无关,因而可以保证在整个测量频段内的测量精度保持不变。
图2所示为等精度测量原理时序图,等精度测频法同时使用两个计数器分别对待测信号频率fx和频标信号频率fm在设定的精确门内进行计数,精确门与预置门门限时间相同,fx的上升沿触发精确门。用两个计数器在精确门内对fx和fm分别计数,若两个计数器的计数值分别为M和N,则:
待测信号的频率为:
fx=Mfm/N
必须指出,计数器M对待测脉冲计数,计数是由待测信号上升沿控制,计数值为整数,不存在计数误差。计数器N对频标信号计数,由于精确门的启闭时刻对频标信号来说是随机的,为非整数,故会存在±1的误差。另外,频标信号由晶振提供,而晶体振荡器有很高的稳定度,误差较小。
等精度测频在CPLD内部的逻辑框图实现如图3所示。
4 结 语
本设计利用CPLD进行数字逻辑器件设计,并配合多路精密程控放大,实现了宽输入范围高精度频率测量,频率测量稳定度达10 -7,而且将输入信号的范围进行了有效地拓宽,使这种高精度频率计的应用领域更加广泛。同时,解决了传统分立数字器件测频时存在的问题。
上一篇:UPS电源工作原理及应用
下一篇:一种可编程宽带放大器的设计
推荐阅读最新更新时间:2023-10-17 15:44
Vishay线上图书馆
- 选型-汽车级表面贴装和通孔超快整流器
- 你知道吗?DC-LINK电容在高湿条件下具有高度稳定性
- microBUCK和microBRICK直流/直流稳压器解决方案
- SOP-4小型封装光伏MOSFET驱动器VOMDA1271
- 使用薄膜、大功率、背接触式电阻的优势
- SQJQ140E车规级N沟道40V MOSFET
- MathWorks 和 NXP 合作推出用于电池管理系统的 Model-Based Design Toolbox
- 意法半导体先进的电隔离栅极驱动器 STGAP3S为 IGBT 和 SiC MOSFET 提供灵活的保护功能
- 全新无隔膜固态锂电池技术问世:正负极距离小于0.000001米
- 东芝推出具有低导通电阻和高可靠性的适用于车载牵引逆变器的最新款1200 V SiC MOSFET
- 【“源”察秋毫系列】 下一代半导体氧化镓器件光电探测器应用与测试
- 采用自主设计封装,绝缘电阻显著提高!ROHM开发出更高电压xEV系统的SiC肖特基势垒二极管
- 艾迈斯欧司朗发布OSCONIQ® C 3030 LED:打造未来户外及体育场照明新标杆
- 氮化镓取代碳化硅?PI颠覆式1700V InnoMux2先来打个样
- 从隔离到三代半:一文看懂纳芯微的栅极驱动IC
- 直播已结束|Littelfuse 智能楼宇电子设备安全与可靠性解决方案
- 直播【英飞凌应用于变频家电和中小功率工业变频控制领域的产品:iMOTION™】
- 力源带你了解安森美半导体开发神器——高度灵活的物联网开发套件( IDK )!看视频轻松答题享好礼!
- 是德科技有奖问答活动之二,小信号测试的示波器方案,答题闯关赢好礼!
- 有奖直播|相约Keysight World 2019“汽车电子及新能源汽车测试”论坛
- 已结束【Microchip 安全解决方案系列在线研讨会】
- 夏末秋初,玩转EE芯积分,边赚边花+礼品兑换剧透
- 有奖直播|基于TI最新低功耗60GHz毫米波雷达传感器的工业应用
- 更好的供电方式:使用更小、更轻的电源模块加速车辆电气化
- 有奖直播:英飞凌 MERUS™ D 类音频放大器的多电平技术及其优势