基于L6562的高功率因数boost电路的设计

最新更新时间:2013-06-22来源: EDN关键字:L6562  Boost  AP法则  Boost电感 手机看文章 扫描二维码
随时随地手机看文章
Boost是一种升压电路,这种电路的优点是可以使输入电流连续,并且在整个输入电压的正弦周期都可以调制,因此可获得很高的功率因数;该电路的电感电流即为输入电流,因而容易调节;同时开关管门极驱动信号地与输出共地,故驱动简单;此外,由于输入电流连续,开关管的电流峰值较小,因此,对输入电压变化适应性强。

储能电感在Boost电路起着关键的作用。一般而言,其感量较大,匝数较多,阻抗较大,容易引起电感饱和,发热量增加,严重威胁产品的性能和寿命。因此,对于储能电感的设计,是Boost电路的重点和难点之一。本文基于ST公司的L6562设计了一种Boost电路,并详细分析了磁性元器件的设计方法。

1 Boost电路的基本原理

Boost电路拓扑如图1所示。图中,当开关管T导通时,电流,IL流过电感线圈L,在电感线圈未饱和前,电流线性增加,电能以磁能的形式储存在电感线圈中,此时,电容Cout放电为负载提供能量;而当开关管T关断时,由于线圈中的磁能将改变线圈L两端的电压VL卡及性,以保持其电流IL不突变。这样,线圈L转化的电压VL与电源Vin串联,并以高于输出的电压向电容和负载供电,如图2所示是其电压和电流的关系图。图中,Vcont为功率开关MOSFET的控制信号,VI为MOFET两端的电压,ID为流过二极管D的电流。以电流,IL作为区分,Boost电路的工作模式可分为连续模式、断续模式和临界模式三种。


分析图2,可得:

式(2)即为Boost电路工作于连续模式和临界模式下的基本公式。

2 临界状态下的Boost-APFC电路设计

基于L6562的临界工作模式下的Boost-APFC电路的典型拓扑结构如图3所示,图4所示是其APFC工作原理波形图。


利用Boost电路实现高功率因数的原理是使输入电流跟随输入电压,并获得期望的输出电压。因此,控制电路所需的参量包括即时输入电压、输入电流及输出电压。乘法器连接输入电流控制部分和输出电压控制部分,输出正弦信号。当输出电压偏离期望值,如输出电压跌落时,电压控制环节的输出电压增加,使乘法器的输出也相应增加,从而使输入电流有效值也相应增加,以提供足够的能量。在此类控制模型中,输入电流的有效值由输出电压控制环节实现调制,而输入电流控制环节使输入电流保持正弦规律变化,从而跟踪输入电压。本文在基于此类控制模型下,采用ST公司的L6562作为控制芯片,给出了Boost-APFC电路的设计方法。

L6562的引脚功能如下:

INV:该引脚为电压误差放大器的反相输入端和输出电压过压保护输入端;

COMP:该引脚同时为电压误差放大器的输出端和芯片内部乘法器的一个输人端。反馈补偿网络接在该引脚与引脚INV之间;

MULT:该引脚为芯片内部乘法器的另一输入端;

CS:该脚为芯片内部PWM比较器的反相输入端,可通过电阻R6来检测MOS管电流;

ZCD:该脚为电感电流过零检测端,可通过一限流电阻接于Boost电感的副边绕组。R7的选取应保证流入ZCD引脚的电流不超过3 mA;

GND:该引脚为芯片地,芯片所有信号都以该引脚为参考,该引脚直接与主电路地相连;GD:为MOS管的驱动信号输出引脚。为避免MOS管驱动信号震荡,一般在GD引脚与MOS管的栅极之间连接一十几欧姆到几十欧姆的电阻,电阻的大小由实际电路决定;

VCC:芯片电源引脚。该引脚同时连接于启动电路和电源电路。

另外,在电路设计时,稳压管D2应选用15 V稳压管,电容C2应选用10μF的电解电容;二极管D5应选用快恢复二极管(如1N4148);电阻R3应选用几百千欧的电阻。

图5给出了由L6562构成的APFC电源的实际电路图。图中,输入交流电经整流桥整流后变换为脉动直流,作为Boost电路的输入;电容C4用以滤除电感电流中的高频信号,降低输入电流的谐波含量;电阻R1和R2构成电阻分压网络,用以确定输入电压的波形与相位,电容C10用以虑除3号引脚的高频干扰信号;Boost电感L的一个副边绕组,一方面通过电阻R7将电感电流过零信号传递到芯片的5脚,另一方面作为芯片正常工作时的电源;芯片驱动信号通过电阻R8和R9连到MOS管的门极;电阻R11作为电感电流检测电阻,用以采样电感电流的上升沿(MOS管电流),该电阻一端接于系统地,另一端同时接在MOS管的源极,同时经电阻R10接至芯片的4脚;电阻R5和R6构成电阻分压网络,同时形成输出电压的负反馈回路;电容C9连接于芯片1、2脚之间,以组成电压环的补偿网络;电阻R4,电容C6,二极管D5,稳压管D6和Boost电感的副边则共同构成芯片电源。

3 Boost电感的设计

本设计采用AP法则来设计Boost电感。其原理是首先根据设计要求计算所需电感:


式中,Virms为输入电压有效值;Vo为输出电压,fsw(min)为MOS管的最小工作频率,通常在20kHz以上;Pi为输入功率。计算要求的AP值为:


式中,Ku为磁芯窗口利用率,Jc为电流密度,IL(pk)为电感电流峰值。

根据(4)式的计算结果可选择磁芯的AP值(大于AP_req,AP=AeAw,单位为m4)。

然后根据所选磁芯来计算原边匝数及所需气隙。副边匝数一般按10:1选取。

4 实验波形分析

为了验证以上设计的合理性,本文设定最小输入电压为187 V,最大输入电压为264 V,输入频率为50 Hz,输出电压为400 V,PF=0.99,效率为87%,输出功率26.5 W,最小工作频率为65 kHz来进行实物实验,同时根据计算,并通过IL(pk)=465.3 mA来选取导线为mm,Jc=4/mm2,L=2.99 mH(L=2.7 mH时,验证最小频率为72 kHz>65 kHz,可满足设计要求)。

设Ku=0.3,δBmax=0.3T,由(4)式计算得:

AP_req(min)=6.64×10-10m4

这样,可选择磁芯EE16/6/5,其AP=7.5×10-10m4,可满足设计要求;而由(5)式计算得Np=218.1匝,取215匝,并验证δBmax=0.304T,气隙lgap=0.41 mm。

根据以上计算参数所搭建的试验模型来进行的结果如图6所示。


由图6可见,输入电流能良好的跟随输入电压,且电流电压相位差接近于零,故可实现高功率因数的控制。另外,MOSFET的电流是一种高频三角波,其包络为输入电压。由于MOSFET可实现软开关,能有效减小开关损耗。根据测试结果,该电路的PF可达0.998以上,THD在5%以下。

5 结束语

本文基于L6562芯片设计了Boost高功率因数电路,并引用AP法则设计其关键元器件——Boost电感。经试验验证,该电路启动电流小,外围元器件少,成本低廉,能同时满足电源系统重量轻,稳定性好,可靠性高等要求。实验证明,AP法则是一种快速准确的设计方法。
关键字:L6562  Boost  AP法则  Boost电感 编辑:探路者 引用地址:基于L6562的高功率因数boost电路的设计

上一篇:可控硅在红外遥控开关中的应用及工作原理
下一篇:开关电源中功率MOSFET的驱动技术荟萃

推荐阅读最新更新时间:2023-10-17 15:46

数字万用表用1.5V升压电路,1.5v boost converter
报刊上介绍的1.5V升9V电路.功耗较大的居多,有的工作电流达50mA以上。本文介绍的升压电路(如图3所示)工作电流较小,空载时仅6mA左右,接入工作电流为lmA~3mA数字万用表时,消耗的电池电流在15mA-30mA之间。图3中8050、8550构成自激振荡器,Q2集电极所接电感的反电动势经整流形成高电压。电压的高低由稳压管D1确定。当输出电压超过稳压管击穿电压时,稳压管导通,Q1基极电压上升,使Q2电流减小,输出电压稳定在9v。更换稳压管,可改变输出电压.以适应其他场合的需要。据笔者实删,在空载情况下,最高输出电压可达50V。电感L用7mmX7mm中周的磁帽磁芯绕制,用Φ0.1mm漆包线在工字磁芯上绕满,再包一层胶带后塞入磁帽
[测试测量]
数字万用表用1.5V升压电路,1.5v <font color='red'>boost</font> converter
基于前馈混合控制的BOOST型PFC控制器
1 引 言     近年来对大功率电源需求在不断增加,但是由于采用传统的非控整流开关电源,其输入阻抗呈容性,网侧输入电压和输入电流间存在较大相位差,加上输入电流严重非正弦,并呈脉冲状,故功率因数极低,谐波分量很高,给电力系统带来了严重的污染。因此具有单位功率因数的电源迅速发展起来。同时,功率因数控制器的输出端负载从轻载上升到满载的时候,由于输出电容上的电压未能马上上升到所需要的电压,因此接在功率因数控制器后面的DC-DC变换器的输出就出现了电压下降,经过瞬间变化才达到稳定输出。有时侯由于这个时间过长,会出现失调情况,影响设备的正常工作。因此解决这个失调问题成为当务之急。      为满足对直流电压纹波的要求,通常在直流侧接入一个大
[电源管理]
基于前馈混合控制的<font color='red'>BOOST</font>型PFC控制器
一种实用的BOOST电路
0 引言 在实际应用中经常会涉及到升压电路的设计,对于较大的功率输出,如70W以上的DC/DC升压电路,由于专用升压芯片内部开关管的限制,难于做到大功率升压变换,而且芯片的价格昂贵,在实际应用时受到很大限制。考虑到Boost升压结构外接开关管选择余地很大,选择合适的控制芯片,便可设计出大功率输出的DC/DC升压电路。 UC3S42是一种电流型脉宽调制电源芯片,价格低廉,广泛应用于电子信息设备的电源电路设计,常用作隔离回扫式开关电源的控制电路,根据UC3842的功能特点,结合Boost拓扑结构,完全可设计成电流型控制的升压DC/DC电路,且外接元器件少,控制灵活,成本低,输出功率容易做到100W以上,具有其他专用芯片难以实现的
[应用]
一种新型无源无损软开关Boost变换器
       1前言   开关电源目前存在五个挑战性的问题,能否更加小型化就是其中之一。使开关电源小型化的重要途径是提高开关频率。高频化能使变压器和电感等磁性元件以及电容体积和重量大为减少,从而提高变换器的功率密度。但是提高开关频率的同时也增加了开关损耗,并使电磁干扰更加严重。采用软开关技术可以降低开关损耗,使开关电源可以在低损耗情况下实现高频运行。其实现方法可分为有源和无源软开关技术。有源软开关技术在原有电路上附加有源器件(如开关),价格比较昂贵,工作时还要增加控制电路以对附加开关进行控制,电路复杂,可靠性比较差。相比之下,无源软开关电路简单,可靠性高,价格便宜。这些优点使得无源软开关近几年倍受青睐。对于PWM变换器,无源软
[电源管理]
一种新型无源无损软开关<font color='red'>Boost</font>变换器
基于Matlab的交流斩波型PFC电路仿真研究
  0 引 言   大量电力电子装置和非线性负载的广泛应用,使得电力系统电压及电流波形发生畸变,产生了大量的谐波,导致电源输入功率因数降低,对电网环境造成严重的污染,使用电设备所处环境恶化,也对周围的通信系统和公共电网以外的设备带来危害。为了改善电网环境,必须了解产生谐波污染的原因,并对谐波进行有效的抑制,进行功率因数校正。为了提高供电线路功率因数,保护用电设备,世界上许多国家和相关国际组织制定出相应的技术标准,以限制谐波电流含量。如:IEC555-2,IEC61000-3-2,EN60555-2等标准,规定允许产生的最大谐波电流。我国于1994年也颁布了《电能质量公用电网谐波》标准(GB/T14549-93)。因此,功率因数
[电源管理]
拿下“大工程” 做一个UC3843的Boost升压模块
一、学习UC3843芯片 网上对 UC3843 系列芯片的使用讲解的非常之多,只要认真学习不难发现,最重要的就是吃透后搭建简单实用的电路,还有模块功能、设计要点和计算方法都应该熟记于心了。 图1 UC3843系统图 1、设置PWM最大占空比和频率 PWM脉冲由RT和CT谐振产生,设计RT和CT参数时,先设计最大占空比确定RT,再通过频率确定CT的数值。PWM波形的最大占空比仅由RT函数确定,为了保护电路可以通过限制最大占空比来实现,(比如Boost电路中设置最大占空比为50%,那么输出电压最大值就不可能超过输入电压的50%)公式如下所示: 公式中已知量VRT/CT(valley)= 1.2V,VRT/CT
[电源管理]
拿下“大工程” 做一个UC3843的<font color='red'>Boost</font>升压模块
一种高效率的无桥Boost PFC拓扑的研究
0 引言   传统单管Boost PFC由于结构简单、控制方法成熟是目前使用最多的功率校正拓扑。但是由于该拓扑使用的整流桥在功率等级逐步增加时损耗也逐渐增大,传统的Boost PFC拓扑在高功率及低压大电流输入时效率较低。为了减小整流桥所带来的损耗,多种新型的PFC拓扑不再使用前级整流桥。文献 中对比讨论了多种无桥PFC拓扑。其中Dual Boost PFC(DBPFC)电路(图1)因结构简单、驱动方便成为目前研究的主要拓扑之一。本文分析了该种拓扑的优点,研究、改进了该种拓扑的控制方法,并通过实验验证了理论的正确性。 图1 Bridgeless Dual Boost PFC 拓扑结构 1 DBPFC工作模式及损耗分析 1.
[电源管理]
Buck-Boost 稳态连续导通模式分析
    介绍 Buck - Boost  的稳态连续导通模式分析 , 这部分主要目的就是给出一个 Buck - Boost  稳态连续导通模式下电压转换关系的推导。这是很重要的,因为它揭示了输出电压怎样由占空比和输入电压决定,或者相反,怎样基于输入电压和输出电压来计算占空比。稳态说明输入电压、输出电压、输出负载电流和占空比都是固定不变的,大写字母表示出了稳态下的变量名。      在连续导通模式, buck - boost 转换器保证每个开关周期有两个功率态,当 Q1 是开、 CR1 是关时,就是开态( ON ) ;当 Q1 是关而 CR1 是开时 , 就是关态( OFF ) 。在每个状态中,当回路中的开关被等价回路所代替时,一
[电源管理]
Buck-<font color='red'>Boost</font> 稳态连续导通模式分析
小广播
最新电源管理文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved