用于输入交流400Hz场合的机载高频开关电源解决方案

最新更新时间:2013-06-22来源: EDN关键字:高频  开关电源  解决方案 手机看文章 扫描二维码
随时随地手机看文章
机载高频开关电源产品专门用于输入交流400Hz的场合,这项产品主要应用于军用雷达、航空航天、舰船、机车以及导弹发射等。研制出机载高频开关电源产品对电子武器装备系统的国产化,打破国际封锁,提高我军装备的机动性,高性能都有重要的意义。

机载电源的使用环境比较恶劣,必须适应宽范围温度正常工作,并能经受冲击、震动、潮湿等应力筛选试验,因此设计机载电源的可靠性给我们提出了更高的要求。

机上可供选择的供电电源有两种输入方式:115V/400Hz中频交流电源和28V直流电源。两种输入方式各有优缺点,115V/400Hz电源波动小,需要器件的耐压相对较高;而28V直流电源却相反,一般不能直接提供给设备部件使用,必须将供电电源进行隔离并稳压成为需要的直流电源才能使用。下面主要介绍115V/400Hz中频交流输入方式所研制的开关电源,它的输出电压270~380Vdc可以调节,输出功率不小于3000W,环境温度可宽至- 40℃~+55℃,完全适应军品级电源的需要。

系统构成及主回路设计

图1所示为整机电路原理框图。它的设计主要通过升压功率因数校正电路及DC/DC变换电路两部分完成。115Vac/400Hz中频交流电源经输入滤波,通过升压功率因数校正(PFC)电路完成功率因数校正及升压预稳、能量存储,再通过DC/DC半桥变换、高频整流滤波器、输出滤波电路以及反馈控制回路实现270~380Vdc可调节输出稳压的性能要求。

图1 整机电路原理框图

 
升压功率因数校正电路主要使输入功率因数满足指标要求,同时实现升压预稳功能。本部分设计兼顾功率因数电路达到0.92的要求,又使DC/DC输入电压适当,不致使功率因数校正电路工作负担过重,因此设定在330~350Vdc。

隔离式DC/DC变换器电路拓扑结构形式主要有以下几种:正激、反激、全桥、半桥和推挽。反激和正激拓扑主要应用在中小功率电源中,不适合本电源的 3000W输出功率要求。全桥拓扑虽然能输出较大的功率,但结构相对较为复杂。推挽电路结构中的开关管电压应力很高,并且在推挽和全桥拓扑中都可能出现单向偏磁饱和,使开关管损坏。而半桥电路因为具有自动抗不平衡能力,而且相对较为简单,开关管数量较少且电压电流应力都比较适中,故不失为一种合理的选择。

DC/DC变换电路主要为功率变压器设计,采用IGBT/MOSFET并联组合开关技术和半桥电路平衡控制技术。经过分析计算,采用双E65磁芯,初级线圈12匝,次级绕组圈15匝。

关键技术设计

1.功率因数校正技术和无源无耗缓冲电路

具有正弦波输入电流的单相输入个功率因数校正电路在开关电源中的使用越来越广泛,图2所示为升压功率因数校正和无源无耗缓冲电路。

图2 功率因数校正和新型的无源无耗缓冲电路


采用无源无耗缓冲电路,元件全部采用L、C、D等无源器件,既有零电流导通特性,又有零电压关断特性,比传统的有损耗的缓冲电路元件少30%。缓冲电路元件包括L1、C1、C2、D1、D2和D3。

可用UC2854A控制主开关SWB,其缓冲电路是不需控制的,并且具有电路简单的特点。其原理是将二极管DB反向恢复的能量和SWB关断时储存在C2中的能量在SWB导通时转移到C1中。在SWB关断时,L1中的储能向C2充电,并通过D1、D2、D3转移到CB中,同时也向CB放电,用这种电路实现了零电压关断和零电流导通,有效地减少损耗,提高了电路的效率和可靠性。

该电路的主要特点是:

开关SWB上最大电压为输出电压VL。
Boost二极管DB上最大反向电压为VL+VE,VE值由IR、L1、C1及C2的相关值决定。
开关SWB上最大电流上升率由L1和V1决定,并且导通损耗和应力很小。
开关SWB上最大电压率由C2决定,并且关断功耗和应力很小。
在开关周期中,为获得电流和电压上升率的控制而储存在L1和C2中的能量最终又回到输出电源中,这样确保电路真正的无损耗工作。

2.IGBT/MOSFET并联组合开关技术

图3所示为IGBT/MOSFET并联组合开关电路及工作波形图。与MOSFET相比,IGBT通态电压很低,电流在关断时很快下降到初始值的5%,但减少到零的时间较长,约1~1.5μs,在硬开关模式下会导致很大的开关损耗。在组合开关中,并联MOSFET在IGBT关断1.5μs后,拖尾电流已减少到接近零时才关断。

图3 IGBT/MOSFET并联组合开关电路及工作波形图

 
这种技术因通态损耗很低而使得DC/DC变换器的效率很高。但需工作频率相对较低,一般选取20~40kHz。由于半桥组合开关只需两个开关,总的开关器件的数目少,使可靠性显著提高。

3.半桥电路平衡控制技术

通过控制和调整 IGBT/MOSFET栅驱动的延迟时间可使半桥平衡,避免变压器偏磁饱和过流,烧毁开关管。这在脉冲较宽大时,很容易实现。但当轻载或无载时,脉宽很窄 (例如小于0.3μs),此时的IGBT/MOSFET延迟已取消。因此在窄脉宽时,为保持其平衡,我们采用了一个低频振荡器。当脉宽小于0.3μs时,振荡器起振使PWM发生器间歇工作,保持脉宽不小于0.3μs,以维持半桥平衡,使其在无载时能正常工作。

由于工作频率较低,组合开关的开关损耗很小,通态损耗也很小。

图4 半桥电路平衡控制电路


4.多重环路控制电路


平均电流模式控制系统采用PI调节器,需要确定比例系数和零点两个参数。调节器比例系数KP的计算原则是保证电流调节器输出信号的上升阶段斜率比锯齿波斜率小,这样电流环才会稳定。零点选择在较低的频率范围内,在开关频率所对应的角频率的1/10~1/20处,以获得在开环截止频率处较充足的相位裕量。

另外,在PI调节器中增加一个位于开关频率附近的极点,用来消除开关过程中产生的噪声对控制电路的干扰,这样的PI调节器的结构如图5所示。

图5 具有滤波功能的PI调节器

控制电路的核心是电压、电流反馈控制信号的设计。为了保证在系统稳定性的前提下提高反应速度,设计了以电压环为主的多重环路控制技术。电流环响应负载电流变化,并且有限流功能。设计电路增加了对输出电感电流采样后的差分放大,隔直后加入到反馈环中参与控制,调节器增益可通过后级带电位器的放大环节进行调节。这样电源工作在高精度恒压状态下,输出动态响应,使电源在负载突变的情况下,没有大的输出电压过冲。

5.提高散热效果,降低热阻

为了减小整机体积,达到合理的功率密度,采用了强迫风冷方式。对于风冷散热器来说,风速的大小直接关系到散热效果的优劣。由于要求前后通风,在设计时应考虑:

保证风速达到一定的要求(V= 6m/s),并考虑风压的影响。当风压低于散热器压头损失时,冷却风根本就吹不过去或风速很低,达不到提高散热率的目的。

由于散热器及翼片间隙同风道与散热器间隙有很大差别,当风压过低时,可以在进风口散热器与风道的间隙间加挡流栅板或喇叭型的进口,强迫风从散热器的翼片间流过。

升压电感、主变压器、输出滤波电感成一排固定在散热器上半部,主板固定在散热器下半部;主板上的功率器件如功率开关管、输出整流管通过钢板压条固定在散热器上,主板上半部放质低元器件、下半部放置高元器件,风扇放置在散热器前中上位置并固定在前面板上,采用前进风后出风方式。

军用高频开关电源产品不但要考虑电源本身参数设计,还要考虑电气设计、电磁兼容设计、热设计、结构设计、安全性设计和三防设计等方面。因为任何方面哪怕是最微小的疏忽,都可能导致整个电源的崩溃,所以我们应充分认识到军用高频开关电源产品可靠性设计的重要性。

试验结果

对设计参数进行试验,试验结果如图6~8所示。

图6 DC/DC初级电压波形(满载)


图7 DC/DC次级电压波形(满载)


图8 高频电感电流模拟器波形


从表1可以看出,测试结果符合协议的规定,其中功率因数、效率、电源调整率、负载调整率、输出噪声等参数优于协议要求。

 
关键字:高频  开关电源  解决方案 编辑:探路者 引用地址:用于输入交流400Hz场合的机载高频开关电源解决方案

上一篇:压电振动式发电机微电源智能控制应用电路的设计
下一篇:智能电表设计中的抗干扰措施

推荐阅读最新更新时间:2023-10-17 15:46

无线充电联盟标准及TI兼容解决方案
  引言    无线充电 技术在消费类市场表现出巨大的潜力。在不使用连线的情况下给电子设备充电不但可为 便携式 设备用户提供一种便利的解决方案,而且还让广大设计人员能够寻找到更具创新性的问题解决方法。许多电池供电型便携式设备均能受益于这种技术,从手机到 电动汽车 不一而足。    电感 耦合方法可以实现高效和通用的无线充电。为了便于使用并且让设计人员和消费者都受益,无线充电联盟 (WPC) 制定出了一种标准。在供电设备(电力发射器,充电站)和用电设备(电力接收器,便携式设备)之间创建了互操作性。WPC 成立于 2008 年,由亚洲、欧洲和美国的各行业公司组成,其中包括电子设备制造厂商和原始设备制造商 (OEM)。WPC 标
[电源管理]
无线充电联盟标准及TI兼容<font color='red'>解决方案</font>
利用固定导通时间控制器优化开关电源能效
由于拥有较高的效率和较高的功率密度,开关电源在现代电子系统中的使用越来越普及。特别是随着控制芯片的应用,开关电源的电路设计得到了极大的简化,往往只需要在脉宽调制(PWM)控制芯片的基础上再加一些外围器件即可组成开关电源,这更加促进了开关电源的设计和发展。从种类来看,开关电源主要包括交流-直流(AC-DC)转换器和直流-直流(DC-DC)转换器两大类型。前者是将输入为50/60 Hz的交流电经过整流、滤波等步骤将其转换为直流电压,后者广泛用于对系统中的直流电源进行转换和分配。   根据拓扑结构的不同,DC-DC转换器包括降压(Buck)、升压(Boost)、降压-升压(Buck-Boost)、反激(Flyback)、正激(Forw
[应用]
高频机逆变电路结构图
 图所示为高频机所采用的逆变电路的结构图。由图可见,高频机逆变电路中的功放电路采用的是半桥式功放电路,这种功放电路需要正弦波调制电路提供2路相互独立的SPWM驱动信号。在左侧的正弦波调制电路中,由电脑板直接提供2路SPWM波信号,经隔离驱动后送至功放电路。   在这种结构中,每一桥臂功率管的数量也视输出功率而定,当输出功率较小时,功率管采用MOS器件,输出功率较大时,也采用IGBT模块。
[电源管理]
<font color='red'>高频</font>机逆变电路结构图
开关电源产生辐射的屏蔽技术
  抑制开关电源产生干扰辐射的另一种方法是屏蔽,目的是切断电磁波的传播途径,用电磁屏蔽的方法解决电磁干扰的问题不会影响电路的正常工作。用导电率良好的材料对电场进行屏蔽,用磁导率高的材料对磁场进行屏蔽。为了防止脉冲变压器的磁场泄漏,可以利用闭合环形成磁屏蔽。另外,还要对整个的开关电源进行电场屏蔽。屏蔽应考虑散热和通风问题,屏蔽外壳上的通风孔最好为圆形多孔,在满足通风要求的条件下,孔的数量可以多,每个孔的尺寸要尽可能小。接缝处要焊接,以保证电磁通路的连续性,如果采用螺钉固定,注意螺钉之间的距离要短。屏蔽外壳的引人、引出线处要采取滤波措施,否则,这些会成为干扰发射天线,严重降低屏蔽效果。若对电场屏蔽,屏蔽外壳一定要接地,否则将起不到屏蔽效
[电源管理]
研华EPC-R4680工控机 实现快速储物柜智能解决方案
在过去十年中,电子商务和在线购物已迅速普及。随着需求的不断增长,这一市场不仅需要大量的供应链,还需要高效的物流系统,它们都是决定在线购物成败的关键。在这种环境下,智能设备在扩大传输带宽和改善客户服务方面起着重要作用。根据最近的一项调查显示,全球储物柜市场预计在未来五年内将以4.5%的复合年增长率增长,截至2024年将达到15.4亿美元。 挑战 面对大量的在线业务订单,一家大型物流公司意识到他们必须更改履行流程才能满足交付要求。这就需要合理管理人工成本和资源,同时需要引入新的智能物流业务模型。新模型需要用智能设备来弥补劳动力,因此可以通过实施云服务来实现全面控制和监控。
[工业控制]
研华EPC-R4680工控机 实现快速储物柜智能<font color='red'>解决方案</font>
PAC平台为石油天然气行业提供新一代的测控解决方案
引言 进入二十一世纪以来,整个石油天然气行业都面临着巨大的挑战,伴随着中国、印度发展所带动的石油天然气资源需求快速增长却是已探明储量和质量的下降。据据2007年BP能源的统计,截至2006年底,全球石油探明储量12082亿桶,同比下降0.1%,可供开采41年。在这种形势下,美Chevron石油公司的CEO David J. O’Reilley指出了“轻易获取石油资源的时代已经一去不返了,现在我们需要新的技术和投资以保证未来石油的持续供应”。这类原先在工业生产应用上一直处于相对保守的石油天然气公司,不得不开始通过引入创新的科技与产品,以尽可能的扩大已有油田的产能、提高生产或配送效率,或者进一步发展深海勘探。其中,最直接的方式就是提高从
[测试测量]
PAC平台为石油天然气行业提供新一代的测控<font color='red'>解决方案</font>
高频电压与电流的测量方法
1、高频电压的测量 为了分析电压表对被测电路的影响,我们来研究电压表的等效电路。电压表的ci越大,回路的c越小,引起回路失谐越严重;输入电阻ri并联在回路上,它将改变其工作状态,ri越小,工作状态改变越显著。 2、用于高频测量的电压表电压,应具有如下特性 (1)在宽频段内,读数同被测电压的频率关系不大。 (2)对被测源工作状态的影响小。换句话说,输入电阻要大(输入电容小)。 (3)测量电压的范围宽,灵敏度高。 (4)读数建立时间短。 (5)有承受过载的能力(电压表的输入端的电压超过允许值)。 3、高频电流的测量 【例】 电流表要接在最底点位处,接在引起被测电路反作用最小的地方。
[测试测量]
<font color='red'>高频</font>电压与电流的测量方法
最佳的解决方案带来高精度
我们还没有完成 PGA-SAR 系统和 △-∑ 转换器之间的比较。在我最后一篇文章(《ADC 吞吐时间:SAR转换器 与 △-∑ 转换器的比较》)中,我们比较了这两种系统的吞吐时间。文中,我们得出了这样的结论:PGA-SAR 系统和我们所研究△-∑转换器的吞吐时间非常接近;70 ksps和 24 ksps 在内。您在电子邮件中称这种差异如此微小,小到没有任何差别。什么是最好的系统?这种评估,看起来像是旗鼓相当,但在精确度方面呢?   您会在系统是否可以(平均而言)产生正确的输出值方面想到精确度。您可以利用DC规范(例如:补偿、增益和线性等)来最为贴切地对精确度进行描述。在这种评估中,您应该使用系统设备的最小和/或最
[电源管理]
最佳的<font color='red'>解决方案</font>带来高精度
小广播
最新电源管理文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved