采用小尺寸工艺设计的高性能ADC通常采用1.8V至5V单电源供电。为了处理±10 V或更大的信号,ADC一般前置一个放大器电路以衰减该信号,防止输入端饱和。在信号包含大共模电压时普遍采用差分放大器(diff amp)。
差分放大器抑制共模电压的能力由增益设置电阻的比率匹配决定;匹配度越高,共模抑制比(CMR)越高。对于采用0.1%外部电阻的离散放大器,CMR限制为54 dB。集成紧密激光调整的电阻和运算放大器的IC可实现高于80 dB的CMR。
如同许多其他模拟IC,早期的差分放大器一般采用±5V至±15V双电源供电。随着ADC和其他元件趋向于采用更低电源电压,有一段时间差分放大器成为前端唯一需要双电源的电路。但为这一个电路添加负电源相当不便。
新型差分放大器可采用2.7V至15V单电源,但在某些工作条件下,运算放大器的输入输出要全部接至负电压轨(地)。要测量包含负共模电压的信号,共模输入必须升高以脱离负电压轨。要测量负信号,放大器输出必须升高以脱离负电压轨。通过施加一个负电压到基准引脚即可实现这两种电平转换。例如,使用5V单电源,在参考引脚上的2.5V电压源将输出设为中间电源电压并将升高运算放大器输入端呈现的共模电压。该电源必须为低阻抗以避免降低CMR,而且要低漂移以在温度范围内保持精度。图1显示了一种使用两个外部精密电阻和一个低漂移精密运算放大器的典型解决方案。
图2显示一种使用AD8271差分放大器以及在该放大器上集成的多个精密调整的电阻实现更低成本、更高性能的替代解决方案。片上电阻将器件输出设为中间电源电压。这些电阻全部由相同的低漂移薄膜材料制成,所以它们在温度范围内的比率匹配十分出色;它们经过调整以匹配电路中的其他电阻,这样不会降低出色的CMR性能。
精密可编程增益差分放大器
AD8271低失真、可编程增益差分放大器包含一个精密运算放大器和七个激光调整的增益设置电阻,可实现0.5、1或2倍的用户可选差分增益。它也可以配置为40种以上的单端配置,增益范围为-2至+3。该器件分为两级:B级特性规定为0.02%的最大增益误差、2ppm/°C的最大增益漂移、600μV的最大失调电压,以及80dB的最小共模抑制比;A级特性规定为0.05%的最大增益误差、10ppm/°C的最大增益漂移、1000μV的最大失调电压,以及74dB的最小共模抑制比。两级特性都包括–110dB的谐波失真、15MHz的带宽和30V/us的压摆率。此速度和精度组合使该器件完全适合于仪表放大器、驱动ADC、电平转换和自动测试设备。AD8271采用 5V至36V单电源或±2.5V至±18V双电源,消耗电流2.3 mA。它采用10引脚MSOP封装,额定温度范围为–40°C至+85°C,千片订量报价为1.25美元/片。
图1 AD8271不需外部元件即可将输出转换成中间电源
关键字:电源 电平转换 放大器
编辑:探路者 引用地址:带精密电源基准电平转换的高性能差分放大器
推荐阅读最新更新时间:2023-10-12 22:22
电源管理方案对LED节能举足轻重
出于节能的考虑,业界要求对LED的亮度进行调节,利用PWM(脉冲宽度调制)的方法进行调节是一种有效的调光手段。不过,用传统的PWM 芯片 ,每组数据都要先将图像数据转换为PWM的控制信号,这导致控制器的工作负荷很高。聚积科技采用了内置S-PWM的方式,有效地降低了控制器的负担。
S-PWM是聚积科技的专利技术,它改进了传统PWM的功能,将图像的导通时间分散成数段较短的导通时间,在保持同样亮度的情况下提高刷新率,降低闪烁感。同时,内置S-PWM芯片可以将图像数据直接传送到芯片,无需转换运算,这样就提高了控制器的带载点数,减少了系统中控制器的数量,从而也降低了成本。此外,使用S-PWM驱动芯片还可以提高LED利用率、降低系统
[电源管理]
开关电源开机时刻的过渡过程
前面我们分析过的所有 开关电源 电路,很少提到电路过渡过程的概念,实际上,在开关电源电路中,工作开关的接通和关段,电路中电流和电压的变化过程,都是属于电路过渡过程,但我们为了分析简单,都把电路的过渡过程基本忽略掉了。如果认真对开关电源电路进行分析,输出电路中的电流一般都不是线性的或锯齿波;输出电压也不是一个矩形波或锯齿波,我们把它们当成矩形波或锯齿波,只是在一个特定条件或范围内,把它们的变化率或数值当成了一个平均值来看待。
在具有电感、电容、电阻的电路中,发生电路过渡过程的电压、电流一般都是按指数函数的曲线规律变化,正弦或者余弦函数是指数函数的特殊情况。在具有过渡过程的电路中,我们不能简单地用正弦波电路的计算方法来分析,用付
[电源管理]
便携设备电源管理系统
1 引言 早期嵌入式便携设备由于结构简单,往往只采用一两种电源管理器件即可满足供电需求。但是随着嵌入式处理器功能不断增强,便携设备的电源管理系统设计面对尺寸和成本的全新挑战。因此,采用传统的单一功能电源管理器件已无法满足需求,因此。采用专门集成电源管理单元(PMU)设计电源系统已是大势所趋。这里给出了一种基于LP3913的便携式设备电源管理系统设计方案。 2 LP3913简介 LP3913是美国国家半导体公司推出的一款功能强大的PMU,专门针对嵌入式便携设备应用,其主要特点为:2路线性电源(LDO)输出和3路DC—DC Buck变换器输出,每路输出电压可动态调节;开关机检测和控制功能;USB/AC外部电源输入管理,
[电源管理]
交流电源的零交越脉冲电路设计
本设计中的电路可生成一个交流电源的零交越脉冲,并提供电气绝缘。输出脉冲的下降沿出现在零交越点前约200μs。使用这个电路可以安全地停止一个可控硅栅极的触发,使之有时间正常地关断。只有当主电压约为0V时,电路才产生短脉冲,因此在230V、50Hz输入下只耗电200mW。
电路为电容C1充电,直至达到22V齐纳二极管D3的上限(图1与参考文献1)。电阻R1和R5用于限制输入电流。当输入整流电压降至C1电压以下时,Q1开始导通,产生一个几百微秒长的脉冲。IC1的耦合使得Q1方波发生器作出响应。rms工作电压只需要R1和R5。SMD的1206型电阻一般能承受rms为200V的电压。本设计将R1和R5之间的输入电压一分为二,总额定电压为
[电源管理]
选择合适的电源连接器
统设计日趋小型化,然而电源供应需求却在增长,这给设计工程师带来巨大的挑战。这意味着电源连接器必须同时容纳两个相互矛盾的必要条件,也就是在增加电源之余设计也必须更为紧凑,在筛选市场上琳琅满目的电源连接器时,更不知如何着手。就以重点特征——额定电流为例,其中就蕴藏着许多学问。 额定电流,是促使母端子特定升温的电流量,一般为20℃或30℃。要正确使用这数据,除了须了解其测试方法,也须留意其测试环境。例如:有些单纯测试一对相接却没有安装在外壳内的母端子及公针。众所周知,影响连接器的升温的因素,包括接触 电阻 、电流量及散热渠道。在实际应用时,公针母端子是安装在外壳内的。因此,散热渠道剧减。再加上一般同时使用多个接触对,更不能以额定电流峰值
[电源管理]
功率电感对电源的改善
随着移动设备的多功能化,其电源电路的工作电压也变得多样化。具体来说,以典型的手机为例,除了原始的通话功能外,相机、广播、电视等各种功能已经成为普遍标准的功能。这些功能的工作所需的电压各不相同,为此,电池电压必须通过电源转换电路将其电压转换成各电路正常工作所需电压。大多采用电源转换效率较高的开关控制器(通常称作DC-DC转换器)。 另外,在移动设备多功能化进程中,对机器的小型、薄型化要求也逐步提升。为此就必须减少元件的使用数量,或者将元件做到更小。此对策是借由提高DC-DC转换器的开关频率,减小必要的功率电感和电容的额定参数值,以此来适应元件的小型化。 将集中控制电源的PMIC(Power Management IC)的
[电源管理]
带整流桥输入级的开关电源差模干扰特性
1引言
随着开关电源在现代工业社会中日益广泛的应用,其功率变换单元的PWM开关器件产生的电磁干扰(EM I问题也逐渐引起了设计和应用人员的重视 。随着国际和国内电磁兼容(EMC)法规的日益完善和严格执行,设计和解决开关电源产品的电磁干扰问题显得尤为重要。滤波器是降低电磁干扰发
射的常规手段,但传统的滤波器设计过程是通过反复的“试探一纠错”来实现,缺乏系统性的机理研究,不但耗费资金,而且延误产品投放市场的时机
通常根据传导祸合方式的不同将电磁干扰分为差模(DM)和共模(CM)两种[}4} : DM是由快速电流变化率(dildt的开关电流作用在电路寄生电
感上形成的噪声;CM则是由于快速电压变化率
( dv/dt)
[电源管理]
简化汽车显示器的系统电源设计
在汽车显示器方面,汽车制造商开始在车厢内安装更多屏幕,更大、更清晰。高级仪表盘、平视显示器、信息娱乐系统、中央显示器、后座娱乐系统、智能后视镜等功能的显示器可生动地显示周围环境、汽车控制和信息娱乐选项。 更重要的是,随着车辆配备更多的自主功能,显示器将继续在安全性和便利性方面发挥关键作用。高级车辆可能拥有多达 10 个显示器。在接下来的几年里,我们可能会看到屏幕大于34英寸的车辆变得普遍,分辨率为4K(最终是8K)。然而,为每辆车添加更多屏幕涉及复杂的平衡行为,因为这些屏幕的电源电路与许多其他电子系统竞争车内有限的空间。需要更小和简化的PCB,因为这将减少物料清单(BOM),从而减少相关成本。 有效的汽车显示器必须解决以下
[嵌入式]