开关电源在模拟量采集系统中的应用

最新更新时间:2013-07-18来源: 与非网关键字:开关电源  模拟量  采集系统 手机看文章 扫描二维码
随时随地手机看文章

尽管在模拟量采集系统中,对ADC芯片等的供电一般建议最好不用开关电源,以避免其固有的纹波大、噪声等问题,但开关电源仍以其高效率、低价格等优点得到广泛应用,尤其是在工业控制等领域。本文介绍开关电源在模拟量采集系统中的应用,并对可能出现的一些问题进行分析。

开关电源对ADC芯片工作的影响及解决方法

电源对ADC芯片的影响,除了体现在电源抑制比(PSRR)参数上,还表现在,当ADC芯片对输入的模拟信号进行采样、保持、转换时,电源电压、参考地的变化,都会对ADC芯片内部采样电路、比较器等的工作产生影响,使得采集结果出现晃动。因此,一般ADC芯片特别是高精度ADC芯片,都建议最好用质量好的线性电源供电。如果采用开关电源,则需要尽力避免它对ADC芯片产生影响。

图1是一个典型的应用,其中模拟采样用的信号调理电路、ADC和现场模拟信号不隔离,ADC芯片和CPU电源相互隔离。CPU采用控制系统内部电源。而ADC的+5V电源是由+24V电源经过+24V到+5V电源变换而来的。图中左侧部分是典型的串联、降压非隔离型DC-DC变换器的原理框图。设计中,可以根据开关管的开关频率、+5V消耗电流、要求的输出纹波最大值,计算出电感L1、电容C1的合适大小。

为了分析出开关电源对ADC芯片的影响,这里假设信号调理电路及ADC芯片正常运行的耗电是25mA/+5V,对于光耦部分,如果采用6N136、TLP521等三极管输出型的光耦,则当CPU不启动ADC工作时,光耦全不导通,耗电小于1mA;当CPU启动ADC工作时,将有数据输出Dout、数据准备好Ready等信号经过光耦,光耦处于导通状态,为了达到比较高的通讯速率,光耦总耗电需要25mA/+5V左右。这样,+5V负载电流将在25~50mA之间来回变动。正常开关电源设计的输出电流应该2倍于最大负载电流,这里设为100mA,下面将要说明负载电流的变化将极大影响+5V,从而影响ADC采样稳定性。

开关电源的工作原理是,平时Q1的周期性开关动作,再经过L1、C1,得到所需要的输出;而当输出+5V电压发生上升/下降超过一定限度(如几十毫伏),经过采样、反馈后,开关控制电路控制Q1的开关,使得输出电压向+5V回归。在+5V负载比较恒定的情况下,输出+5V的最大纹波,可以根据采样反馈电路工作原理(比如MC34063是通过比较器和锁存器来控制Q1的开关)、开关频率等计算出来。

但如果是图1中带光耦的情况,开关电源的输出不仅供给相对恒定的负载(如信号调理电路、ADC芯片),而且还要供给光耦等数字部分电路,有可能发生最坏的情况是,当开关管Q1正处于上述稳定工作中的关断时刻,光耦突然被ADC导通,此时L1、C1将要提供50mA的负载电流,而平时稳定工作中L1只提供25mA的电流,剩下电流只能从电容C1中获取,使得C1上的电压即+5V电平下降比较大。这将持续半个开关周期,直到开关管Q1打开。如果开关电源的开关频率是100KHz,而ADC芯片数据Dout的通讯频率也是100KHz左右,将引起输出+5V电压频繁波动,造成更大的输出纹波。在示波器上甚至能看到噪声反馈在+24V输入上。

上面只是理论分析的最坏情况,实际应用中,滤波电容等器件的非理想性、PCB布线等等,将使得电源纹波更大,ADC采样结果不稳定。有的微功率型隔离DC/DC,或者如电荷泵器件,只有开关管的周期性开关动作,而没有上述采样、反馈电路,输出更容易受到负载不稳定的影响,使得ADC采样结果更不稳定。

图1:开关电源在模拟量采集系统中的典型应用图

比较好的解决办法

1.设法降低开关电源的负载变化,因为虽然目前开关电源的工作频率已到几百kHz以上,但开关电源的负载响应时间仍至少要几个μs,低于目前大多ADC采样的速度。比如采用光耦6N137就比6N136好,因为6N137只是静态电流比较大,而它需要的二极管导通电流小,使得电源的负载变化不会很大。或者不把模拟+5V电源接到小功率的开关电源输出上,而接到其它功率比较大的开关电源输出上,避免开关电源输出受到负载变动的影响。同样一个值得注意的问题是,不要使用ADC芯片的Ready、Dout、Din等引脚直接驱动光耦,最好通过光耦驱动电路,使得模拟和数字电源得到很好地相互隔离,避免在光耦开关时,有大的电流越过ADC芯片。

2.开关电源后加LDO等输出电压纹波小的器件,再供给信号调理电路、ADC芯片,保证模拟电路电源的稳定。

3.如果在开关电源后加LC滤波,将LC滤波后的电源供给数字部分,此时应该针对不同的负载电流大小,选择相应的L、C数值,必要的时候,要通过一定的计算、仿真及试验来加以确定。电感、电容不能过大,否则难以响应负载(光耦开/关)的变化。建议开关电源输出直接供给数字部分;同时经过LC滤波或者RC滤波,再供给信号调理电路、ADC芯片。在采用LC滤波时,还需要注意LC的谐振频率要远远偏离开关电源工作频率。比如滤波RC电路的电阻R可以取10Ω左右,电容取10μF左右。

4.其它常规的方法也特别重要,如信号调理电路、ADC芯片的电源和地,要同光耦等数字部分的电源和地分开走线,最后单点连接。或者两者采用两个DC/DC电路分别给ADC芯片等模拟电路和光耦等数字电路供电。原因和上文分析一样,也是为了更好的避免数字、模拟之间电源的相互干扰。

开关电源对运算放大器的影响及解决方法

一般模拟量信号进入ADC芯片之前,要利用运算放大器进行信号调理,以提供必要的电平变换、滤波、ADC芯片驱动等等。运算放大器与ADC相接口时,容易受到电源的影响,从而也影响ADC芯片采集的稳定。图2是运算放大器与ADC的典型接口图。

图2:运算放大器与ADC的典型接口图

大多ADC芯片内部的模拟输入端都具有一个采样电容Cin,电阻R1对运放输出限流,数倍于采样电容的陶瓷电容C1使得开关SW合上的瞬间,通过C1迅速给采样电容Cin充电。R1、C1的具体数值,与运放的稳定性、建立时间、ADC采样时间、需要的采样精度有关。

这里要指出的是,在上述过程中,运放的电源也会起很大的作用。在运放对电容充电期间,瞬间需要较大的电流,而开关电源的负载响应时间不够,将造成比较大的电源纹波,影响运放的输出。比如采用C1=10Cin=250pF,则当SW从别的通道(假设为-5V)切到AI0通道(假设+5V)时,Cin从-5V切换到C1上的电压+5V,C1迅速给Cin充电,最终电压为(5V×10-5V)/11=4.09V,运放输出要从5V变到4.09V,R1太小容易带来运放输出稳定性问题,同时也会对运放输出电流带来冲击,影响电源电压。

特别是在采用电荷泵给运放-VCC提供小的负电源时,电荷泵输出电压随负载增大而降低的特性使得效果更加明显。比较发现,运放采用直流线性稳压电源时,12位的ADC采集结果很稳定,结果变动可达1LSB以下;相比之下,采用电荷泵器件时,如果电荷泵输出没有大的滤波,ADC采集结果晃动可达3LSB。如果增大R1为100Ω时,C1=10Cin,不考虑运放输出电阻时,需要运放输出电流的最大值为(5-4.09)V/100Ω=9.1mA),小于一般运放的最大输出电流。但R1太大,将明显降低ADC所能采集到的信号频率,在ADC对该通道“跟踪”期间,运放无法完成对C1和Cin充电,使得该次采样与运放输入端电压相差较大,会造成谐波失真。

解决办法除了前文描述的以外,同时还可以采用以下方法:

1.运放的正负电源对地除并接一个10~22μF大电容以减少电源纹波外,再并接一个0.1~1μF的小陶瓷电容,以通过0.1~1μF高频去耦电容的作用,避免负载电容的瞬间充电对电源的影响。效果类似于数字芯片电源和地之间加的去耦电容。

2.增大图2中ADC前端电阻R1,减小运放的输出电流,能起到一定的滤波作用。当然R1大的话,将衰减通过运放的信号。

开关电源对参考源的影响及解决方法

有的ADC芯片要外部提供参考源,这时外部参考源的供电,也需要参照前文所述的处理方法,采取在输入端加滤波等措施。同时注意,对连续逼近(SAR)型ADC芯片,如TLC2543芯片,采样、保持后的内部每次电压转换,都需要将采集电压和参考源的1/2、1/4、1/8等组合相比较,以确定相应n位ADC结果的第(n-1)位、第(n-2)位等,参考源的分压是通过电容实现的。

这样,对应转换每位均需要将参考源VREF通过开关接到相应分压电容上,对参考源而言,将看到一个变化的容性负载,从而产生了上文所说的问题。如果ADC芯片内部没有参考源缓冲电路,而外部参考源的容性负载能力又不够时,需要在外部参考源输出端,串一个缓冲器,再通过一个RC电路接到ADC芯片的参考源输入端。其它处理方法,同上文所述,如在外部参考源的电源端,并接一个10~22μF大电容和一个0.1~1μF的小陶瓷电容等。

本文小结

本文虽然针对SAR型ADC进行分析、处理,但其应用原理,对各种ADC都有参考价值。仔细分析各个环节的工作原理,采取一定的对策,就能在模拟量采集系统中,使用廉价的开关电源,而又获得极佳的采集性能。

关键字:开关电源  模拟量  采集系统 编辑:探路者 引用地址:开关电源在模拟量采集系统中的应用

上一篇:MAX2640低噪声放大器用于ISDB-T设计
下一篇:基于电力继电保护问题的探讨

推荐阅读最新更新时间:2023-10-12 22:22

一款自激式稳压电源原理分析(典型四款直流稳压电路)
 1、稳压 二极管 稳压电路   稳压二极管,又叫齐纳二极管,是一种直到临界反向击穿电压前都具有很高电阻的半导体器件。在这临界击穿点上,反向电阻降低到一个很小的数值,在这个低阻区尽管流过二极管的电流变化很大,而其两端的电压却变化极小,并且这种现象的重复性很好,从而起到稳压作用。因为这种特性,稳压管主要被作为稳压器或电压基准元件使用。   图1为稳压二极管稳压电路,由限流电阻Rs和稳压二极管Dz组成。   Us为未稳压的输入直流电压,U。为经过稳压的直流电压,Rs为Dz的限流保护电阻,又起电压调整作用,D2为稳压二极管,R为负载电阻。其工作原理是:此电路主要利用稳压二极管的稳压特性,即Dz反向导通后其两端的压降基本保持不变。当
[电源管理]
dsPIC3F3013的CAN息线数据采集系统
引 言 在工业控制中,为了保证系统的可靠运行,需要检测周围的环境变量(如温度、气压、湿度等)。通常的做法是将分布在各处的传感器采集到的信号通过各自的线路连接到监控中心,这种方式在有效地完成检测任务的同时也造成了线路资源的极大浪费。因此,提出了简化线路布局的要求。CAN(控制器局域网)是串行通信协议,能有效支持高安全等级的分布实时控制,同时在理论上,CAN总线网络内的节点近乎没有限制。基于此,本设计将一种基于数字信号控制器的CAN总线数据采集系统作为一个CAN节点,每一个需要监控的区域放置一个CAN节点,各个节点通过CAN总线与监控中心实施通信。系统总体框图如图1所示。 1 硬件构成 该数据采集系统由两部分构成
[单片机]
dsPIC3F3013的CAN息线数据<font color='red'>采集系统</font>
电流型控制的开关电源系统
  电流型控制的开关电源系统有三种控制方式:即峰值电流控制、平均电流控制和滞环电流控制。图1所示即为电流型控制的开关电源系统结构框图。它包含有两个负反馈控制环:内环是电流环,外环是电压环。电压控制器的输出控制信号ue作为电流环的给定信号;电流环由电流检测(如直流电流互感器)、处理(I-U转换)和电流控制器等组成;被检测的电流可以是电感电流iL,也可以是主开关管的电流iv,通过电流检测电阻Ri,将检测到的电流(iL或iv)转换成电压iLRi或ivRi,然后再与电流给定信号ue进行比较,并将得到的误差信号经过电流控制器放大之后,通过PWM脉冲调制器进行调制,产生出占空比d去控制开关转换器的主开关管V的通/断。为了介绍简单,本文只介绍连
[电源管理]
电流型控制的<font color='red'>开关电源</font>系统
大功率开关电源的EMC测试分析及正确选择EMI滤波器
   开关电源 具有体积小、重量轻、效率高等优点,广泛应用于各个领域。由于 开关电源 固有的特点,自身产生的各种噪声却形成一个很强的电磁干扰源。所产生的干扰随着 输出功率 的增大而明显地增强,使整个电网的谐波污染状况愈加严重。对电子设备的正常运行构成了潜在的威胁,因此解决开关电源的电磁干扰是减小电网污染的必要手段,本文对一台15kW开关电源的EMC测试,分析其测试结果,并介绍如何合理地正确选择EMI 滤波器 ,以达到理想的抑制效果。   1 开关电源产生电磁干扰的机理   图1为所测的15kW开关电源的传导骚扰值,由图中可以看出在0、15~15MHz大范围超差。这是因为开关电源所产生的干扰噪声所为。开关电源
[测试测量]
大功率<font color='red'>开关电源</font>的EMC测试分析及正确选择EMI滤波器
利用FPGA实现无线分布式采集系统设计
1 引言 近些年来,随着电子技术的发展,无线通信技术、计算机网络的发展,分布式无线数据采集网络技术开始兴起,并迅速的应用到各个领域。在一些地形复杂,不适合人类出现的区域需要进行数据采集的情况下,都可以适当的选择无线分布式采集来进行。现有的无线分布式采集系统中,往往使用单片机、DSP等作为系统的主控控制单元。但是由于其自身工作特点,往往对于精确的定时控制以及并行处理能力上比FPGA弱。随着FPGA等可编程逻辑器件的发展,为无线数据可靠传输提供了很好的实现平台。采用FPGA作为时序控制和信号处理的处理器,将使系统电路设计更加简洁、可靠、灵活,可有效的缩短开发周期,并降低开发成本。 为此,基于CycloneIV+STM32设计了
[单片机]
利用FPGA实现无线分布式<font color='red'>采集系统</font>设计
开关电源电路设计的元器件选择
  很多未使用过 开关电源 设计的工程师会对它产生一定的畏惧心理,比如担心开关 电源 的干扰问题、PCB layout问题、元器件的参数和类型选择问题等。其实只要了解了,使用开关电源设计还是非常方便的。   一个开关电源一般包含有开关电源控制器和输出两部分,有些控制器会将MOSFET集成到芯片中去,这样使用就更简单了,也简化了PCB设计,但是设计的灵活性就减少了一些。   开关控制器基本上就是一个闭环的反馈控制系统,所以一般都会有一个反馈输出电压的采样电路以及反馈环的控制电路。因此这部分的设计在于保证精确的采样电路,还有来控制反馈深度,因为如果反馈环响应过慢的话,对瞬态响应能力是会有很大影响。   输出部分设计包含了输出电容,输出
[电源管理]
DIP-8封装单片高压功率型开关电源模块
1 VIPer22A器件功能简介 VIPer22A型单片式开关电源功率变换器的封装形式为DIP-8:D—正端,即功率MOSFET的漏极,5﹑6﹑7﹑8脚(并联);S—负端,1﹑2脚(并联),即是功率MOSFET的源极;UDD—自给电源端,也是芯片外自激电源端,4脚;FB—输出电压反馈端,3脚。封装形式为8脚,实际只有4端,简便好记,也易于制板,如图1所示。 VIPer22A单片式开关电源功率变换器内部电路结构框图示于图2。由于器件正端和负端都通过较大电流,采用并联方式以增大容量,在绘制印制板电路图时,该两端多制成较大面积的铜箔,并在焊装VIPer22A器件时直接将器件底面压贴在这大面积铜箔上,相当于加了一个小小散
[电源管理]
DIP-8封装单片高压功率型<font color='red'>开关电源</font>模块
开关电源中高频磁性组件设计常见错误概念辨析
很多电源工程师对开关电源中高频磁性组件的设计存在错误的概念,其设计出来的高频磁性组件不能满足应用场合的要求,影响了研发的进度和项目的按期完成。基于开关电源及高频磁性组件设计经验,对一些概念性错误进行了辨析,希望能给大家提供借鉴,顺利完成高频磁性组件的设计以及整个项目的研制。 引言 开关电源中高频磁性组件的设计对于电路的正常工作和各项性能指针的实现非常关键。加之高频磁性组件设计包括很多细节知识点,而这些细节内容很难被一本或几本所谓的“设计大全”一一罗列清楚 。为了优化设计高频磁性组件,必须根据应用场合,综合考虑多个设计变量,反复计算调整。正由于此,高频磁性组件设计一直是令初涉电源领域的设计人员头疼的难题
[电源管理]
小广播
最新电源管理文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved