大功率开关电源的EMC测试分析及正确选择EMI滤波器

发布者:HeavenlyWonder最新更新时间:2012-08-01 来源: 21ic 关键字:开关电源  EMC测试  滤波器 手机看文章 扫描二维码
随时随地手机看文章

  开关电源具有体积小、重量轻、效率高等优点,广泛应用于各个领域。由于开关电源固有的特点,自身产生的各种噪声却形成一个很强的电磁干扰源。所产生的干扰随着输出功率的增大而明显地增强,使整个电网的谐波污染状况愈加严重。对电子设备的正常运行构成了潜在的威胁,因此解决开关电源的电磁干扰是减小电网污染的必要手段,本文对一台15kW开关电源的EMC测试,分析其测试结果,并介绍如何合理地正确选择EMI滤波器,以达到理想的抑制效果。

  1 开关电源产生电磁干扰的机理

  图1为所测的15kW开关电源的传导骚扰值,由图中可以看出在0、15~15MHz大范围超差。这是因为开关电源所产生的干扰噪声所为。开关电源所产生的干扰噪声分为差模噪声和共模噪声。

未加任何抑制措施所测得的传导骚扰

图1未加任何抑制措施所测得的传导骚扰

  1.1共模噪声

  共模噪声是由共模电流,IcM所产生,其特征是以相同幅度、相同相位往返于任一电源线(L、N)与地线之间的噪声电流所产生。图2为典型的开关电源共模噪声发射路径的电原理图。

共模噪声电原理图

图2 共模噪声电原理图

  由于开关电源的频率较高,在开关变压器原、副边及开关管外壳及其散热器(如接地)之间存在分布电容。当开关管由导通切换到关断状态时,开关变压器分布电容(漏感等)存储的能量会与开关管集电极与地之问的分布电容进行能量交换,产生衰减振荡,导致开关管集电极与发射极之间的电压迅速上升。这个按开关频率工作的脉冲束电流经集电极与地之问的分布电容返回任一电源线,而产牛共模噪声。

  1.2差模噪声

  差模噪声是由差模电流IDM昕产生,其特征是往返于相线和零线之间且相位相反的噪声电流所产生。

  1.2.1差模输入传导噪声

  图3为典型的开关电源差模输入传导噪声的电原理图。

  其一是当开关电源的开关管由关断切换到导通时,回路电容C 通过开关管放电形成浪涌电流,它在回路阻抗上产生的电压就是差模噪声。

图3差模输入传导噪声电原理图

图3差模输入传导噪声电原理图

  其二是工频差模脉动噪声,它是由整流滤波电容c 在整流电压上升与下降期问的充放电过程中而产生的脉动电流与放电电流,也含有大量谐波成分构成差模噪声。

  以上两种差模噪声都返回到输入端的交流电网,所以称为输入传导噪声,它不仅污染电网,还给其它接人电网的电子、电气设备造成危害,还直接导致输入功率因数的下降。

  1.2.2 差模输出传导噪声

  第三种差模噪声是输出传导噪声,它是整流输出部分二极管由正偏转为反偏时,反向电流与二极管结电容、分布电感产生尖峰电压而造成的差模噪声,图4为典型的半波整流滤波电路:

图4 差模输出传导噪声电原理图

图4 差模输出传导噪声电原理图

  2 EMI滤波器的正确选择

  EMI滤波器是以工频为导通对象的反射式低通滤波器,插入损耗和阻抗特性是重要技术指标。EMI滤波器在正常工作时处于失配状态,因为在实际应用中,它无法实现匹配。如滤波器输入端阻抗 (电网阻抗)是随着用电量的大小而改变的。滤波器输出端的阻抗 。(电源阻抗)是随着负载的大小而改变的。要想获得最佳的EMI抑制效果,必须根据滤波器的两端所要连接的源端阻抗特性和负载阻抗特性来选择EMI滤波器的电路结构和参数,即遵循输入、输出端阻抗失配原则。一般选用方法是:

  (1)低的源阻抗和低的负载阻抗:选取(T)n 滤波器结构;(2)高的源阻抗和高的负载阻抗:选取(π )n“滤波器结构;(3)低的源阻抗和高的负载阻抗:选取(LC)n“滤波器结构;(4)高的源阻抗和低的负载阻抗:选取(CL) 滤波器结构。

  若不能满足阻抗失配的原则,就会影响滤波器的插损性能,严重时甚至引起谐振,在某些频点处出现干扰放大现象,所以,阻抗失配连接原则是应用EMI滤波器必须遵循的原则。

  针对图l所测得的传导骚扰值,可以看出在0.15~15MHz范围内严重超差,最大值超过限值近40dB,而且尖峰较为密集。说明电源所产生的浪涌电压和浪涌电流较大,即电源的du/dt、di/dt很大,也就是产生的_F扰能量很大。开关电源共模噪声等效电路呈高阻抗容性,而差模等效电路高、低阻抗同时存在。针对这种情况,EMI滤波器的电路结构选为二级共模电感和一个单独的差模电感型式,这样既可以滤除共模噪声,又可以滤除差模噪声。插入损耗为40dB,所测得的传导骚扰值如图5所示。

图5加EMI滤波器后所测的传导骚扰

图5加EMI滤波器后所测的传导骚扰[page]

   由图5可以看出,传导骚扰值在某些频段处还有超差,效果不十分理想,这是因为,传导接受机所测得的传导骚扰值是个综合参数,它无法判断出在0.15—15MHz频率范围内,共模干扰和差模干扰孰重孰轻,一般讲:在0.15~0.5MHz低端差模干扰分量很大,在0.5~5MHz共模干扰和差模干扰同时存在,在5~30MHz之间共模分量较大。原因之二是由于滤波器的电感和电容元件都受其分布参数的影响,频率愈高所受的影响愈大。滤波器内部电感、电容的装配工艺、接地质量也会对插入损耗产生很大的影响。原因之三是,由于滤波器电感会受到电流浪涌的影响,它工作的峰值电流比额定电流要大一倍左右,在重载和满载时,差模电感容易产生磁饱和现象,致使电感量迅速下降,导致插入损耗性能变坏。

  3 较为理想的解决办法

  针对以上情况,在EMI滤波器前端再串接一个一定值的电感,在交流电路中电感的数值 X= wL="2"πrfL,电感就是一个电抗器,所以此电感也称为进线电抗器。由X =2πrfL可知,它的感抗与频率成正比,对于低频电流可以畅通无阻地通过进线电抗器,对于高频电流进线电抗器呈高阻抗、高压降。因此,进线电抗器可作为电流的低通(高阻)滤波器。

  并且,开关电源所产生的谐波电压大部分都降在了进线电抗器上。所以,串接进线电抗器不但使传导骚扰值整体下降了,还使电压谐波得到了改善。当电感值选为6mH时,其抑制效果如图6所示。所以对已定型的大功率开关电源,选择进线电抗器+EMI滤波器,不失为解决其电磁骚扰的比较理想的方法。

图6进线电抗器

图6进线电抗器+EMI滤波器后所测的传导骚扰

  4 结语

  大功率开关电源产生电磁干扰是一个复杂的问题,电源产生电磁干扰以传导干扰的危害尤为严重。根据电磁干扰产生的机理,正确选择EMI滤波器是有效抑制传导干扰的关键所在,其目的就是有效地抑制开关电源对电网的传导干扰,又可以降低从电网引入的传导干扰,使开关电源的电磁兼容性达到国家标准规定的限值要求。

关键字:开关电源  EMC测试  滤波器 引用地址:大功率开关电源的EMC测试分析及正确选择EMI滤波器

上一篇:浮地测量和隔离输入示波器基础知识
下一篇:非接触位移测量的直线位移传感器

推荐阅读最新更新时间:2024-03-30 22:28

云塔科技毫米波滤波器专利解密
云塔电子科技有限公司作为国内为数不多的以射频滤波器和射频模组为产品方向的创业公司,已定型十数款滤波器产品并已陆续推出,尤其在SPD、LTCC、SAW和BAW领域均有技术储备,成为国内唯一拥有全类型滤波器研发、生产和供应能力的公司。 前不久,国内半导体厂商安徽云塔电子科技公司首次研制成功5G毫米波(mmWave)频段的微型化滤波器,工作于33GHz,带宽高达2GHz,带内插损小于2.7dB,带外抑制超过30dB,为我国5G产品在射频前端方面提供了强大的技术支持。 为接收与传输日益增大的数据流,下一代移动终端需要在更高的频段,如Sub6G和毫米波频段。在不增大手机体积的前提下处理如此高的频率,就必须有能处理高频率信号、小巧且耗
[网络通信]
云塔科技毫米波<font color='red'>滤波器</font>专利解密
EMI滤波器设计原理
高频开关电源由于其在体积、重量、功率密度、效率等方面的诸多优点,已经被广泛地应用于工业、国防、家电产品等各个领域。在开关电源应用于交流电网的场合,整流电路往往导致输入电流的断续,这除了大大降低输入功率因数外,还增加了大量高次谐波。同时,开关电源中功率开关管的高速开关动作(从几十kHz到数MHz),形成了EMI(electromagnetic interference)骚扰源。从已发表的开关电源论文可知,在开关电源中主要存在的干扰形式是传导干扰和近场辐射干扰,传导干扰还会注入电网,干扰接入电网的其他设备。  减少传导干扰的方法有很多,诸如合理铺设地线,采取星型铺地,避免环形地线,尽可能减少公共阻抗;设计合理的缓冲电路;减少电路杂散
[电源管理]
EMI<font color='red'>滤波器</font>设计原理
技术文章—滤波器电路工作原理详解
在整流电路输出的电压是单向脉动性电压,不能直接给电子电路使用。所以要对输出的电压进行滤波,消除电压中的交流成分,成为直流电后给电子电路使用。在滤波电路中,主要使用对交流电有特殊阻抗特性的器件,如:电容器、电感器。本文对其各种形式的滤波电路进行分析。 一、滤波电路种类滤波电路主要有下列几种:电容滤波电路,这是最基本的滤波电路;π 型 RC 滤波电路;π 型 LC 滤波电路;电子滤波器电路。 二、滤波原理 单向脉动性直流电压的特点 如图 1(a)所示。是单向脉动性直流电压波形,从图中可以看出,电压的方向性无论在何时都是一致的,但在电压幅度上是波动的,就是在时间轴上,电压呈现出周期性的变化,所以是脉动性的。但根据波形分
[电源管理]
技术文章—<font color='red'>滤波器</font>电路工作原理详解
开关电源PWM的五种反馈控制模式
  一、引言   PWM开关稳压或稳流电源基本工作原理就是在输入电压变化、内部参数变化、外接负载变化的情况下,控制电路通过被控制信号与基准信号的差值进行闭环反馈,调节主电路开关器件的导通脉冲宽度,使得开关电源的输出电压或电流等被控制信号稳定。 PWM的开关频率一般为恒定,控制取样信号有:输出电压、输入电压、输出电流、输出电感电压、开关器件峰值电流。由这些信号可以构成单环、双环或多环反馈系统,实现稳压、稳流及恒定功率的目的,同时可以实现一些附带的过流保护、抗偏磁、均流等功能。对于定频调宽的PWM闭环反馈控制系统,主要有五种PWM反馈控制模式。下面以VDMOS开关器件构成的稳压正激型降压斩波器为例说明五种PWM反馈控制模式的发展过程
[电源管理]
<font color='red'>开关电源</font>PWM的五种反馈控制模式
单片机实现开关电源的设计
1 引 言 MSP430系列单片机是美国TI公司生产的新一代16位单片。开关Boost稳压电源利用开关器件控制、无源磁性元件及电容元件的能量存储特性,从输入电压源获取分离的能量,暂时把能量以磁场的形式存储在电感器中,或以电场的形式存储在电容器中,然后将能量转换到负载。对DC—DC主回路采用Boost升压斩波电路。 2 系统结构和总设计方案 本开关稳压电源是以MSP430F449为主控制器件,它是TI公司生产的16位超低功耗特性的功能强大的单片机,其低功耗的优点有利于系统效率高的要求,且其ADCl2是高精度的12位A/D转换模块,有高速、通用的特点。这里使用MSP430完成电压反馈的PI调节;PWM波产生,基准电压设定;电压电流显示
[电源管理]
单片机实现<font color='red'>开关电源</font>的设计
常用于调节隔离式电源输出电压电路
TL431 并联稳压器或许是隔离式开关电源中最常见的 IC,其可提供低成本的简单方式精确调节输出电压。图 1 是 TL431 及典型应用电路(用于调节隔离式电源输出)的方框图。TL431 在单个三端器件中整合一个内部参考和一个放大器。R3 和 R5 电阻分压器以及 TL431 的内部参考电压可设定输出电压。在 TL431 内部,误差放大器输出可驱动晶体管的基极。晶体管集电器不仅可连接 TL431 的 K (阴极)引脚,而且还可驱动一个光耦合器,其可将隔离边界的误差信号发送至主控制器。反馈环路的频率响应由位于 TL431 阴极与 REF 引脚之间的补偿组件形成。 图 1. 常用于调节隔离式电源输出电压的 TL431 电路。 在
[模拟电子]
高斯滤波器在实时系统中的快速实现
  滤波器在信号处理、信号检测、通信领域有非常重要的应用,在实时系统中,对滤波器的性能和处理速度有非常严格的要求,特别是快速实时系统中,处理速度至关重要。目前,为满足快速处理的需要,用DSP技术是理想的选择。但是,目前在实时控制系统中,大多是用单片机实现的,它不仅完成信号的采样,还需完成信号的处理和控制等功能,如果单片机系统本身可以完成信号的快速处理任务,将非常方便,我们在一个用MCS-51单片机组成的强噪声背景下的通信系统中,实现了高斯滤波器的快速实现,满足了系统的需要。   1 算法原理   高斯滤波器是一个低通滤波器,其方程 ,可以证明,高斯滤波器可用均值滤波器多次逼近,一般情况下,大于或等于三次逼近就可近似于高斯滤
[嵌入式]
高斯<font color='red'>滤波器</font>在实时系统中的快速实现
凌力尔特高性能宽带有源滤波器和ADC 驱动器
凌力尔特公司 ( Linear Technology Corporation ) 推出一个由 5 个单和双路高性能、宽带宽低通有源滤波器 / ADC 驱动器放大器产品组成的系列,为宽带无线通信和信号处理设备中具挑战性的滤波应用提供了外形尺寸最小和具成本效益的解决方案。有了这个系列,凌力尔特公司就可提供最广泛的宽带有源滤波器选择: · LTC6603 双路可编程 2.5MHz 滤波器 / ADC 驱动器 · LTC6601-1 5 至 28MHz 带宽低噪声可配置 0.5% 容限
[电源管理]
凌力尔特高性能宽带有源<font color='red'>滤波器</font>和ADC 驱动器
小广播
添点儿料...
无论热点新闻、行业分析、技术干货……
最新测试测量文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved