基于DSP技术的功率电感5kW离网型光伏逆变器设计

最新更新时间:2013-08-03来源: 与非网关键字:5kW离网型光伏逆变器  Boost电路  TMS320F2812 手机看文章 扫描二维码
随时随地手机看文章

太阳能光伏发电是当今世界上最有发展前景的新能源技术,太阳能光伏发电系统按照系统运行方式的不同可分为离网型光伏发电系统、并网型光伏发电系统以及混合型光伏发电系统。随着我国光伏发电系统的迅速发展,尤其是光伏屋顶计划的实施,国内对离网型光伏逆变器的需求将越来越大。离网型光伏发电系统主要是由光伏电池阵列、控制器、逆变器、储能装置等环节组成,如图1所示,其中逆变器是光伏系统中重要的器件之一,其可靠性和转换效率对推行光伏系统、降低系统造价至关重要。

 



目前,国内同类产品主要存在以下不足:a.大多采用单片机控制,实时性差,数据处理及通信能力有限;b.采用变压器,体积大、笨重;c.输出电压精度不高,不能满足社会发展的需要。本文提出了5kW光伏控制器的设计方案,可以广泛用于离网型光伏发电系统、风光互补发电系统,具有体积小、重量轻、输出电压精度高、波形好、现场总线实现智能监控等特点。

1、5kW离网型光伏逆变器基本结构

 

光伏逆变器的结构如下所示,包含一次回路和二次回路两部分,其中一次回路由输入滤波电路、Boost升压电路、全桥逆变电路和输出滤波电路等组成,二次回路由TMS320Fz812控制器电路、信号检测电路、人机交互电路和通讯电路组成。下面就5kW离网型光伏逆变器的硬件主电路和控制策略进行设计。

 



图2光伏控制器结构图

2、5kW离网型光伏逆变器硬件设计

 

目前,常用的离网型逆变电路主要有三种拓扑结构:工频隔离单级逆变器、高频隔离两级逆变器和无隔离两级逆变器。经理论计算和实践验证,使用一种更适合用在光伏发电系统中的电路拓扑结构:无隔离两级逆变,也叫做Boost逆变器,如图3所示。

 



通过输入滤波电路对光伏太阳能输入的48V直流电进行滤波处理,然后通过Boost升压电路进行升压,采用全桥逆变进行逆变处理,输出SPWM波,最后经过LC低通滤波器进行滤波,输出50Hz频率的正弦波。

2.1输入滤波电路的设计

 

输入滤波电路是由滤波电容组成,用来减小输入端电压的脉动,假设变换器传输最大功率为Pmax,由输入输出功率相等可得出一个周期内输入滤波电容所提供的能量约为

 

 

2.2 Boost电路

 

Boost电路如图4所示,其中Q为全控型的功率器件IGBT,Boost电路是一种输出电压等于或高于输入电压的非隔离直流变换电路,当光伏控制器的输入电压在允许范围波动时,通过控制功率开关器件Q的导通比D,使输出电压保持稳定。



根据Boost电路中电感电流是否连续可以分为电感电流连续、电感电流断续和电感电流临界连续三种工作模式。当工作于临界工作模式时,电感的取值满足式(3)。

 

2.3单相全桥逆变电路

 

本文中单相全桥逆变电路的驱动波形是通过调制法得到的,信号波和载波的产生以及调制都是通过DSP2812实现的。SPWM有三种调制方式:同步调制、异步调制和分段同步调制,本设计输出频率是50Hz,频率不是太低,所以采用同步调制方式。

2.4 LC低通滤波器

 

SPWM波中含有载波频率的整数倍及其附近的谐波分量。为了获得良好的输出电压波形,必须利用LC低通滤波器消除高次谐波。随着载波比的升高,最低次谐波离基波越远,也就更容易进行滤波,提高载波比将有效改善输出电压质量,但载波比的提高受制于功率开关器件的开关速度以及开关损耗等因素,LC低通滤波器的选取主要考虑几个方面的因素,噪声、抑制能力、输出阻抗、逆变电流应力。

设计中还要综合考虑滤波电路的体积、重量以及制作成本,通常截止频率选择在开关频率的1/10~1/20,本设计中选择系统开关频率为18kHz,逆变器输出交流电源频率为50Hz,初步确定截止频率为1kHz,滤波器中有两个待定的参数,即滤波电感和滤波电容。

LC低通滤波器的结构如图5所示,3、5kW离网型光伏逆变器的控制策略SPWM控制技术在逆变电路中的应用十分广泛,本文采用PID控制与闭环负反馈控制相结合的数字控制策略。

3.1控制脉冲的产生


本文采用TI公司的TMS320F2812为主控芯片,F2812共有两个事件管理器EVA和EVB,每个都可产生8路的脉冲输出,其中由全比较单元输出3对互补的信号,每对互补信号的延迟时间可由相应的死区定时器产生,事件管理器利用内部的定时器和比较单元产生相应的脉冲。文中通过EVA输出一对互补的SPWM脉冲信号和一路独立输出的PWM信号,分别控制Boost升压电路和逆变器电路。



3.2输出频率的计算

逆变器输出SPWM脉冲信号的频率是50Hz,SPWM波形每个正弦波周期输出的点数主要取决于目标输出正弦波的频率和SPWM脉冲波的载波频率。如SPWM的载波频率为18kHz,要输出的正弦波的频率分别为50Hz,所需要的正弦表的点数N为3.3闭环负反馈控制DSP2812实时检测输出输入的电压、电流值,反馈到DSP内部,经PI调节后,改变相关寄存器参数,控制驱动脉冲的波形,实现实时闭环控制,系统的控制框图如图6所示,系统采用二个闭环负反馈调节,根据反馈信号的不同,实时调节输出,使输出稳定。另外,当输出电流信号突然增大到超过最大允许电流时,关闭PWM输出,以保护逆变装置不受损害。

 



4、5kW离网型光伏逆变器软件设计

4.1 SPWM控制程序

 

本设计利用事件管理器的一个完全比较单元输出一对互补的PWM脉冲,时钟由通用定时器1提供,计数器的工作方式设置为连续增减方式。功率开关器件有一定关断延迟,当同一桥臂的上管关断时,下管不能马上开通,否则将会由于短路而击穿,使用DSP事件管理器的全比较单元中的死区控制器,在同一桥臂的开通与关断间插入一个死区时间,防止短路现象发生,保护功率器件。SPWM程序主要包括:对EV初始化、相关变量初始化、正弦表的产生和CMPR1的重载,前3个功能都是在主程序中完成。正弦表产生语句如下:

 

 

4.2 A/D转换中断

 

服务程序R>A/D转换的触发源设置为EV中的事件源触发,当AD单元接收到触发信号时,自动开始A/D转换,且将转换结果自动存入结果寄存器ADC-RESULT中,当转换结束信号到来时,进入ADCINT中断服务程序进行相应处理。在中断服务程序中首先读取转换结果,利用算术平均值滤波算法对转换结果进行数字滤波,按一定关系转换成相应的实际电压和电流,计算电流和电压的有效值,传递到主程序中进行判断和谐波分析并通过液晶显示出来,程序流程图如图8所示。

 

5、测试验证

将5kW光伏逆交器的一次回路和二次回路进行组装测试,结合软件编译环境CCS3.3输出波形如图9所示,结果中给出了逆变电路在稳态运行时的实验结果。

在稳态运行时,测得到电压有效值在216V到226V之间波动,频率在49.6到50.5Hz之间波动,测试结果表明,本设计满足设计要求。

关键字:5kW离网型光伏逆变器  Boost电路  TMS320F2812 编辑:探路者 引用地址:基于DSP技术的功率电感5kW离网型光伏逆变器设计

上一篇:优化高电压IGBT造就高效率太阳能逆变器
下一篇:大功率电压型逆变器新型组合式IGBT过流保护方案

推荐阅读最新更新时间:2023-10-12 22:23

基于TMS320F2812的高精度智能变送器设计
  在工业应用中常使用传感器测量参数,但传感器信号一般较弱,并不适合远距离传输,而且非线性效果不理想,达不到较高的精度需求。本文将DSP和eCAN(增强型控制器局域网)总线技术应用于智能变送器中,以TMS320F2812为核心控制器,将数据通过CAN总线进行可靠通信,设计一种高精度智能变送器。   1 系统组成   基于eCAN现场总线技术的智能变送器由上位机和智能测控节点构成。位于监控现场的上位机采用通用计算机(PC)或工控机(ICP),在ISA扩展槽使用1块总线通信适配卡,使上位机具有总线通信功能;而位于工业现场的多个智能测控节点采集现场数据。直接面向生产过程。图l为系统组成框图。   2 eCAN智
[单片机]
基于<font color='red'>TMS320F2812</font>的高精度智能变送器设计
DSP与MSP430的电力系统故障录波器设计
摘要:针对目前电力系统故障录波器功耗高和缺少RF无线通信的缺陷,设计一种基于DSP与MSP430系列单片机CC430F5137的电力系统故障录波器。分析了系统运行原理,详细介绍了数据采集分析模块和数据处理模块的硬件电路设计方法。测试结果验证了基于DSP和CC430F5137的RF无线通信模块应用于电力系统故障录波器的可行性。 关键词:电力系统;故障录波器; TMS320F2812 ;CC430F5137 引言 目前,电力系统录波器已成为电力系统自动化及系统管理的重要组成部分。简单地说,电力系统录波器就是一种数据采集记录装置,它可以记录系统非正常和正常状况下系统电压、电流、频率的变化。在电力系统正常运行情况下记录的数据,对于
[工业控制]
DSP与MSP430的电力系统故障录波器设计
基于TMS320F2812的逆变电源控制器设计
在电力电子技术的应用及各种电源系统中,逆变电源技术均处于核心地位。逆变电源是一种采用开关方式的电能变换装置,它从交流或直流输入获得稳压、稳频的交流输出。近年来,现代逆变电源越来越趋向于高频化,高性能,模块化,数字化和智能化。 文中研制的逆变电源控制系统以 TMS320 F2812作为控制核心,它是一种支持实时仿真的32位微控制器,内部具有UART、SCI总线、SPI总线、PWM、定时器、ADC、CAN总线控制器等众多外围部件,功能强大。主要实现PWM产生、AD转换、DA转换、SCI、开关量检测、继电器驱动以及其他信号控制。 1 基于TMS320F2812逆变电源的总体设计 1.1 DSP控制器TMS320F2812性能 TMS32
[电源管理]
基于<font color='red'>TMS320F2812</font>的逆变电源控制器设计
基于TMS320F2812便携式动态信号分析仪设计
  1 引言   动态信号分析是将时域信号转化为频域进行处理,一般要求使用时窗技术,如快速傅氏变换(FFT)、离散傅氏变换(DFT)等。如果采样点为N,直接DFT运算需要N2次乘法操作,需用大量运算时间。而FFT运算可将运算减少到(N/2)log2N次乘法,因此,FFT成为动态信号分析的核心算法。   基于数字信号处理的动态信号分析系统应用广泛且具有重要作用。这里利用TI公司高性价比的数字信号处理TMS320F2812设计了一种便携式态信号分析仪,该系统信号分析仪可采集动态信号,并处理数据的频域,可直接在LCD上显示信号各分量频率值、功率值、失真度等。通过实验测试,该动态信号分析仪简便直观,只要接收到信号源,即可观察信号的
[测试测量]
基于<font color='red'>TMS320F2812</font>便携式动态信号分析仪设计
基于TMS320F2812便携式动态信号分析仪
1 引言 动态信号分析仪在电子测量领域中称为频域中的“射频万用表”,可见其重要性和宽泛应用。动态信号分析是将时域信号转化为频域进行处理,一般要求使用时窗技术,如快速傅氏变换(FFT)、离散傅氏变换(DFT)等。如果采样点为N,直接DFT运算需要N2次乘法操作,需用大量运算时间。而FFT运算可将运算减少到(N/2)log2N次乘法,因此,FFT成为动态信号分析的核心算法。 这里提出一种基于TMS320F2812的便携式动态信号分析仪设计方案,以数字信号处理为基础,利用数字信号处理器强大的数据处理能力分析所采集的信号,优化动态信号的FFT算法.从而实现对各频率成份和功率谱的计算分析以及失真度的测量,其分析结果在液晶显示器(LC
[单片机]
基于<font color='red'>TMS320F2812</font>便携式动态信号分析仪
三相多开关Boost整流电路
三相多开关Boost型整流电路的每个桥臂上的可关断开关管都带有反并联二极管,可以实现能量的双向流动。这种桥式PWM可逆整流器拓扑,仍属于升压式结构。六开关Boost型PWM整流器的特点是结构简单且宜于实现有源逆变,是多开关PWM 整流电路 中应用最为广泛的一种。
[电源管理]
三相多开关<font color='red'>Boost</font><font color='red'>型</font>整流<font color='red'>电路</font>图
TMS320F2812数字信号处理器与PC的串行通信
摘要:讨论TMS320F2812与PC之间的串行通信方案,给出TI公司的TMS320F2812型DSP和Maxim公司的MAX3160型收发器的硬件接口电路,以及在此基础上使用中断和查询方法实现的串行通信软件流程,同时给出DSP SCI的初始化、发送和接收数据程序代码。 关键词:串行通信;数据信号处理;收发器;PC 引言 目前,微控制器系统在国民经济和人民生活中得到了广泛的运用,而数据传输业仍是一个很重要的领域。对于这些与计算机相距不远的人-机交换设备和串行存储的外部设备(如终端、打印机、逻辑分析仪、磁盘等)来说,采用串行通讯方式交换数据已非常普通 。 在以往DSP与PC之间的串行通信中,由于运行速度的差异和上下位机之间
[嵌入式]
基于LabVIEW和TMS320F2812的液压伺服控制系统的设计
1 引言   随着试验机技术的进步,近年来国内外电子液压万能试验机发展了3种不同控制方式:电液伺服阀控制、采用具有速度控制器的压力阀控制和宽流量范围的比例阀控制。电液倒服控制技术作为现代微电予技术、计算机技术和液压技术的桥梁,已经成为现代控制技术的重要组成部分。采用电液伺服阀控制的电子液压万能试验机除了控制技术外,还采用高精度力与位移传感器的测量系统及计算机采集处理等技术,在功能上达到甚至超过了电子万能试验机,尤其是在大负荷液压万能试验机上具有更大的优势。因此,广泛应用于汽车构架的静载、动载和疲劳等材料的各种性能试验中。   本文在电液伺服控制技术的基础上,对基于LabVIEW和TMS320F2812的液压伺服控制系统进行
[测试测量]
小广播
最新电源管理文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved