大功率多信道通信系统中无源互调的产生机理和测试系统的设计(一)

最新更新时间:2013-09-17来源: 21IC关键字:大功率  多信道  通信系统 手机看文章 扫描二维码
随时随地手机看文章

1.引言

随着科技的不断地发展和进步,移动通信技术也在飞速发展,从早期的1G(FirstGeneration-第一代移动通信技术),到前些年的2G(Second Generation-第二代移动通信技术),再到最近几年火热的3G,以及正在布点试网的4G,移动通信系统在不断地更新换代,移动通信基站也在不断地增加扩容。从2012年中国工业和信息化部发布的通信业运行报告中移动通信用户总数首次突破10亿的数据上也可见一斑。随着移动通信技术飞速发展和移动通信用户的不断增加,我们的通信系统也要持续升级以满足增加的数据传输要求,然而这些飞速的发展和升级并不是完全是积极向上的,也会带来一系列的问题出现。比如无源互调干扰,各运营商不同网络间的干扰,同邻频干扰以及直放站、干放有源干扰等。

而其中最为突出的就是无源互调干扰问题。

在大功率、多信道通信系统中,存在各种各样无源器件(天线、射频馈线、连接件、避雷器、滤波器、双工器、定向耦合器、射频终端负载及衰减器等),这些无源器件的非线性会产生相对于工作频率的更高次谐波,而这些谐波与工作频率混合在一起会产生一组新的频率,其最终结果就是在空中产生一组无用的频谱从而影响通信系统的正常的通信。这就是大功率多通道通信系统中无源互调干扰问题。

无源互调指标是衡量移动通信质量的一个重要指标,但过去由于技术不成熟、没有统一的测试标准或者是一套测试系统太过昂贵等因素导致我们对其重视不够。

但随着移动通信系统中更大功率发射机的应用和接收机灵敏度的不断提高,无源互调产生的系统干扰日益严重,引起越来越多的专家和研究学者对无源互调干扰的重视。而且目前中国各移动运营商也已经将无源互调标准纳入集采要求。这些都迫使我们去对无源互调进行研究分析,对互调干扰进行合理地测量并找到有效降低干扰的措施。

2.PIM的基本理论

无源互调( P a s s i v e I n t e r m o d u -lation,简称PIM),是由无源射频器件,如天线、射频馈线、连接件、避雷器、滤波器、双工器、定向耦合器、射频终端负载及衰减器等器件的非线性产生的。当两个或两个以上的信号在具有非线性无源器件中混合时,无源器件的非线性会产生相对于工作频率的更高次谐波,而这些谐波与工作频率混合在一起会产生一组新的频率,这组新的的频率就是PIM产物。当这些PIM产物落在系统的接收频道内,接收机的灵敏度会降低,从而会导致通话质量或者系统的载波干扰比降低,系统的容量会减少,同时在数字信号传输过程中提高了误码率等,无源互调在日常通信中最常见的表现是在通信过程中遇到的回音、拨不通、在打电话中听到第三方声音等。

无源器件都存在非线性,仅仅在功率不大时可以考虑无源器件为线性。一般的移动通信系统中往往包含多个频率信号,为了分析P I M产物的产生和P I M的基本理论,不失一般性,我们考虑最简单的情况进行分析。即系统中有两路信号f1和f2同时作用于非线性无源器件,则有 :

 

 

式中m,n均为整数,可以为正整数、负整数和不同时为零,(|m|+|n|)定义为PIM产物的阶数。当m±n为奇数时,新产生的频率会落到或者靠近接收通道,可能会影响系统的灵敏度。通常把2f1-f2或者2f2-f1两种频率组合产生的互调产物称为三阶互调,3f1-2f2或者3f2-2f11两种频率组合产生的互调产物称为五阶互调,以此类推。一般情况下随着阶数的增加互调电平呈下降趋势,如图1所示,三阶、五阶、七阶干扰电平最大。

 

 

当两个激励信号通过无源器件时,由于器件的非线性特性,产生的新的谐波和不同阶数的互调产物,这些信号共同组成了Vout的频谱。

当两个以上的信号通过无源器件时,PIM产物数目会很快增加,在多频环境下,PIM产物的数目随传输信道数目和PIM产物阶数的增加而急剧增加。例如,三阶和五阶PIM产物数目与传输信道数目的关系如图2所示。

 

 

3.PIM的产生机理

移动通信系统中,PIM产物来源于系统中无源器件的非线性。经过多方实验认证表明,无源器件所选用材料的品质、镀层的材料和厚度、接触材料中是否含异金属、材料是否具有磁滞特性、各接触面压力、焊接点圆润不虚焊、连接器中是否材质杂质或灰尘等等都会产生PIM干扰。如果按照表现类型分类的话,大致可以分为两大类:由接触引起的PIM干扰;由器件材料引起的PIM干扰。我们把他们定义为:接触非线性和材料非线性。前者表示任何具有非线性的电流和电压行为的金属接触,如法兰盘、调谐螺杆、紧固螺钉结合处的松动、氧化和腐蚀等;后者指具有固有非线性电特性的材料,如铁磁材料、碳纤维和铁、钴、镍合金等。

3.1 接触非线性

由于接触非线性引起的PIM干扰具体包括以下几个方面:

1)低劣的制造工艺引起松动连接、金属裂缝和连接处的氧化作用产生的PIM产物;

2)在金属接触处穿越氧化薄层的电子隧道效应和半导体行为产生的PIM产物;3)由结合面上的点接触引起的机械效应;

4)点电子接触引起的电子效应,点电子接触和局部发电流引起的热响应;

5 )强直流引起金属导体中离子电迁移;

6)接触面的相对运动、振动和磨损;

7)不同热膨胀系数器件接触引起热循环;

8)金属接触的松动和滑动以及氧化层或污染物的形成。

3.2 材料非线性

由于材料非线性引起的PIM干扰具体包括以下几个方面:

1)电介质薄层的隧道贯穿:电子通过厚度小于10nm的电介质薄层直接由一个导体到另一个导体的隧道贯穿,如由氧化层分离的金属之间的电子隧道效应;

2)铁磁效应:铁磁材料(如铁、钴、镍)具有很大的磁导率,并随磁场非线性变化,显示出磁滞特性,铁磁材料能引起很强的PIM产物;

3)接触电容:由接触表面薄层和污染层所引起的电容;

4)电致伸缩:电场引起线性变化,发生于纯净的非线性介质中的电致伸缩对同轴电缆中产生的PIM产物有贡献;

5)磁阻:磁场引起金属导体电阻的变化;

6)电滞效应:材料电偶极子有自排列趋势;

7)磁致伸缩:磁场引起线性变化,产生于铁磁材料内;

8)微放电:真空环境下由强电场产生离子气体引起的二次电子倍增放点,产生于微狭缝之间和金属内的砂眼中;9)电介质击穿:强电场引起的非破坏性固态电介质击穿,可能的机理为热击穿和雪崩;

10)空气充电:充电载流子在接触点进入绝缘体或半导体内,这个效应产生于非均匀内部电场中。在半导体中,由于同时存在电子和空穴,因而可产生很强的非线性电流电压关系;

11)离子导电:由离子(如空穴)引起的导电线性,强电场时为非线性效应。在RF波段和微波频段,直流分量大时,次效应才显示出来;

12)热离子发射效应:由于热能的统计分布引起电子穿过势垒的效应,可在导体氧化膜上产生;

13)场发射:电子穿过势垒的量子力学隧道效应。在强电场情况下,电流密度随场强非线性变化。这个效应对温度的依赖性没有热离子发射效应强,而且发生于低温情况;

14)内部热离子发射效应:类似于热离子发射效应,起源于绝缘体或半导体材料内部填充的陷阱;

15)内部发射:电荷从束缚态到导带的量子力学隧道效应。强电场情况下次效应比热离子发射效应更强。

4.PIM的测量方法

国内的PIM测量由于起步较晚,并没有能形成自己的统一标准,而是各个采购商或制造商根据自己的理解形成了各自的企业标准,但由于测量方法和测试系统之间的区别,各系统间生成的数据差异较大。

国外的PIM测量则起步较早,早在2001年就制定了有关无源测试的射频连接器、连接器电缆部件和电缆的PIM水平测量标准IEC-62037.

PIM的表征有两种方法,一种是绝对功率电平表示法,用以dBm为单位互调产物电平值来表示,另外一种是相对功率电平表示法,即用互调产物绝对功率电平与一个输入载波功率电平的差值来表示,单位为d B c.I E C - 6 2 0 3 7建议实验端口处采用2×20W(43dBm)功率,这一标准已被业界广泛采用。譬如基站天线互调要求一般为-107dBm@2×43dBm,等同于-150dBc@2×43dBm.

一般来说,PIM特性是由多个干扰源的复杂综合,这些干扰源在各种不同程度上受一个或者多个因素的影响。因此对PIM的建模极其复杂,只能对实际PIM电平进行相对准确的预测。要精确可靠地估算PIM行为,只能依靠相对精准的测量方法和适当的测量装置进行测量。

无源器件的设备制造商和移动通信系统运营商以及其他无缘非线性实验研究都需要无源测量系统。一般来说。PIM产物测量方法可分为无辐射式和辐射式两种。前者适合于非线性材料、连接器、同轴电缆、滤波器、功分器、耦合器、双工器、波导器件等的研究,通常测量系统要屏蔽,终端接一个匹配负载,理想情况下不辐射任何能量;后者适合于辐射结构,如天线、馈线、结构部件等的研究,通常系统放在微波暗室或开放的测量场地。由于辐射式测量系统受本地信号环境影响较大,所以只在有些特定情况或必须使用辐射式测量系统时才会采用此方法。相比之下,由于测试系统是屏蔽的,实验参数和实验环境较易控制,无辐射式测量方法更为常用。无辐射式PIM测量方法按照传输方向又分为无辐射传输式和无辐射反射式,选择传输式互调及反射式互调测量是由具有最大功率的载波信号在无源器件中的传播方向决定,如图3所示。

 

 

4.1 传输式测量方法

传输式测量方法,顾名思义是测量被测件中正向传输的PIM信号,一般用于双端口或者多端口器件的测量中。绝大部分的无源器件,如双工器、滤波器、定向耦合器等都可以采用这种测量方法。测量方式如图4所示。具体的测量原理如图5所示。

 

 

 

4.2 反射式测量方法

反射式测量方法,顾名思义是测量被测件中反向传输的PIM信号,一般用于单端口器件的测量中。天线和负载等都可以采用这种测量方法。测量方式如图6所示。具体的测量原理如图7所示。

 

 

 

关键字:大功率  多信道  通信系统 编辑:探路者 引用地址:大功率多信道通信系统中无源互调的产生机理和测试系统的设计(一)

上一篇:电压基准芯片参数以及应用技巧分析
下一篇:大功率多信道通信系统中无源互调的产生机理和测试系统的设计(二)

推荐阅读最新更新时间:2023-10-12 22:26

食品和饮料工厂车间的连通性演变
设备层面的工业以太网如何帮助减少停机时间,并改善操作安全性和实时信息流 在食品和饮料行业中引进机器人和自动化设备带来了多方面的安全性、产品质量、生产力和利润率的提升。自动工艺控制和机器人、用于自动化质量和安全控制的传感器,以及设备视觉系统开发等方面的不断进步,正在引领一个更可持续发展的食品行业。不过,食品和饮料行业在引入创新的工厂车间联网技术方面仍然落后,还有许多事情需要去做。 数项因素已经促使制造商和处理商采用更谨慎的方法来提升其自动化系统,许多厂商20多年来一直使用相同的产品,并且对于升级至更好的解决方案犹豫不决,直到其过时的设备已不再可用。虽然这个行业的竞争激烈,但与其它行业相比,所受到的全球经济衰退的影响较小,因
[嵌入式]
LVDS在通信系统背板设计中的应用
    摘要: 介绍了LVDS技术及其在通信系统背板设计中的应用。     关键词: 通信  共模噪声  LVDS  电磁干扰     无论是基站还是接入设备,越来越高的通信速率以及越来越大的系统需求,使得背板的总线越来越宽,背板的设计越来越复杂。因此,采用新的技术来实现这样复杂的系统,就成了必然的趋势。本文就采用LVDS(低电压差分信号)技术来设计通信系统的复杂背板进行了探讨。 一、LVDS技术特性     LVDS技术(LVDS代表低电压差分信号),是用非常低的电压摆幅(约350mv),在两条PCB走线或一对平衡电缆上,通过差分方式传输数据的方法;允许信号通道数据以每秒数
[工业控制]
TDK “LTCC AiP” 设备,使灵活的5G通信系统设计成为可能
继LTE/4G通信之后,第5代移动通信系统“5G”服务已在世界范围内启动。利用毫米波带的电波实现“超高速、大容量”、“多用户同时连接”、“超低延迟”的5G通信中,将会大量设置的小型基站的“多元天线”发挥着极其重要的作用。TDK正在利用在高频元件和模块等制造过程中积累的LTCC技术,开发将多元天线的关键设备天线阵列和BPF(带通滤波器)集合为一体的“LTCC AiP(封装天线)”设备。通过采用低介电常数、低损耗的新型LTCC材料等措施,实现5G通信所需的高特性,同时还具有卓越的量产性、环境耐受性、放热特性等,使灵活的5G通信系统设计成为可能。 “超高速、大容量”、“多用户同时连接”、“超低延迟”是5G通信的3大特点 具有“
[网络通信]
TDK “LTCC AiP” 设备,使灵活的5G<font color='red'>通信系统</font>设计成为可能
大功率LED路灯技术指标
目前,led照明技术日趋成熟,大功率LED光源功效已经达到80lm/W以上,这使得城市路灯照明节能改造成为可能。LED路灯,特别是大功率LED路灯,正以迅猛的速度冲击传统的路灯市场。 大功率LED路灯 顾名思义是功率大于30瓦以上,采用新型LED半导体光源的路灯。目前LED路灯的标准一般是路面照度均匀度(uniformity of road surfaceilluminance)的平均照度0.48。光斑比值1:2,符合道路照度。(实际1/2中心光斑达到25LUX,1/4中心光强达到15LUX,16米远的最低光强4LUX,重叠光强约6LUX。目前市场路灯透镜材料为改良光学材料,透过率≥93%,耐温-38-+9
[电源管理]
<font color='red'>大功率</font>LED路灯技术指标
大功率半导体激光器阵列热特性分析
1 引言   大功率半导体激光器具有高转换效率、高可靠性及较长的使用寿命,在泵浦固体激光器、打印、材料加工、通信等方面都有着广泛的应用。但是,尽管半导体激光器具有较高的转换效率,还是有大部分的电功率被转化成了热,导致激光二极管工作结温升高。而温度升高必然带来半导体激光器阈值电流增加、发射波长红移,造成模式的不稳定,同时还增加了内部缺陷,对器件的寿命有严重影响[1] 。因此,对半导体激光器热特性的研究具有重要意义。在对半导体激光器进行热分析和模拟方面,前人已做过大量工作。R Puchert等人[2]对大功率半导体激光器阵列在连续驱动条件下的瞬态温度分布进行了模拟和分析,还有很多国内外文献[3-4] 对激光器单管的稳态和瞬态温度
[模拟电子]
模块化结构的大功率LED驱动器解决方案
 0 引言   手电筒、MR - 16灯泡的升级换代、应急灯以及几乎任何低功率白光照明应用都已经在采用LED技术。   接下来路灯可能是LED 技术大规模应用的下一个领域。与手电筒和低功率应用实例相比, LED路灯应用也意味着更大的挑战。   1 设计要求   LED路灯照明不会一蹴而就, 因为尚有重大的技术难题需要攻克。除了个别情况(如太阳能电池), 路灯的输入采用交流电源(通常被称作“离线” ) , 大多是120 V或230 V 交流电。就荧光灯灯管和高压放电灯而言, 它们可选的离线运行镇流器范围较广。但因为发光元件的数目很少, 这种电路很简单。很少有荧光灯有四条以上的灯管, 而高压放电灯采用的元件至少超过一个。然而LED
[电源管理]
模块化结构的<font color='red'>大功率</font>LED驱动器解决方案
具差分输出电压采样、跟踪和PLL的大功率双输出多相降压型DC/DC控制器
2007 年 9 月 11 日 - 北京 - 凌力尔特公司( Linear Technology Corporation )推出具有多相工作、差分输出电压采样和集成式锁相环( PLL )同步功能的双输出同步降压型 DC/DC 控制器 LTC3811 。就大电流应用(高达 200A )而言,多达 12 个相位可以并联和采用不同相的时钟,以最大限度地降低输入和输出滤波要求。 差分放大器提供了真正的输出电压远端采样 , 因而能够在由于通孔、走线和互连线而产生 IR 损耗的场合实现 高准确度的稳压 。 应用包括大电流 ASIC 电源、电源分
[新品]
浅谈通信系统的供电架构
现代电信系统需要更宽的带宽、更快的数据率、更严密的保密措施、更新性能、更多的用户和用户特性的广泛性,这促使为现代电信系统提供dc电压和电流的电源设计,正在从传统形式转变到新的技术形态,基于dc-dc变换器的新一代电源系统必须工作在宽输入电压范围,有时达到30~100V。同时,电源系统为高性能通信系统的ASIC、DSP和用深亚微米CMO工艺设计的微处理器提供若干低电平dc电压。   在通信和网络服务器应 用中,这意味着不仅仅变换48V输入电压为传统的5V和3.3V,而且变换为新的更低的电压(范围从低于1V到2.5V,负载电流10~35A)。另外, 电源系统必须保持严格的容限并产生最小的噪声来保持信号的完整性。这些增加的要求发生空间受
[电源管理]
浅谈<font color='red'>通信系统</font>的供电架构
小广播
最新电源管理文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved