USB电池充电电路

最新更新时间:2013-09-28来源: 电子发烧友关键字:USB  电池充电器 手机看文章 扫描二维码
随时随地手机看文章

  USB标准其中一个特性是从主机为插入的USB外设供电。从过去的串行和并行端口变化到USB,这种进步可使连接到PC的各种器件数大大增加。

  除直接供电USB器件外,USB更有用的一个功能是用USB电源进行电池充电。由于很多便携装置(如MP3播放机,PDA)与PC交换信息,所以,电池充电和数据交换同时在一条缆线上进行将会使装置方便性大大增强。把USB和电池供电功能结合起来,扩大了“非受限”装置(如移动web相机连接PC或不连接PC工作)的工作范围。在很多情况下,不必携带不方便的AC适配器。

  从USB对电池充电可以复杂也可以简单,这取决于USB设备要求。对设计有影响的因素通常是“成本”、“大小”和“重量”。其它重要的考虑包括:1)当设备插入到USB端口时,带放电电池的设备能够以多快的速度进入完全工作状态;2)所允许的电池充电时间;3)受USB限制的电源预算;4)包含AC适配器充电的必要性。本文从电源观点详述USB之后,将针对这些问题给出解决方案。

  

  图1 USB电压降(来自通用串行总线规定Rev2.0)

  

  图2 USB器件插孔

  

  图3 从USB简单充电100mA和从AC适配器充电350mA不需要枚举,这是因为USB充电电流不超过“一个单元负载”(100mA)。3.3V系统负载总是从电池汲取电流

  USB电源

  所有主机USB设备(如PC和笔记本电脑)至少可以供出500mA电流或每个USB插口提供5个“单元负载”。在USB述语中,“一个单元负载”是 100mA。自供电USB插孔也可以提供5个单元负载。总线供电USB插孔保证提供一个单元负载(100mA)。根据USB规范和图1的说明,在缆线外设端,来自USB主机或供电插孔的最小有效电压是4.5V,而来自USB总线供电插孔的最小电压是4.35V。这些电压在为锂离子电池充电时(一般需要 4.2V),其余量是很小的。

  插入USB端口的所有设备开始汲取的电流不得大于100mA。在与主机通信后,器件可决定它是否可以占用整个500mA。

  USB外设包含两个插孔中的一个。两个插孔都比PC和其他USB主机中的插口要小。“SeriesB“和更小的“Series Mini-B”插孔示于图2。从SeriesB的引脚1(+5V)和4(地)和Series Mini-B的引脚1(+5V)和5(地)得到电源。

  一旦连接,所有USB设备需要主机对其加以识别。这称之为“枚举”。在识别过程中,主机决定USB设备的电源以及是否为其供电,对于被认可的设备可以将负载电流从100mA增大到500mA。

  简单的USB/AC适配器充电电路

  某些非常基本的设备不希望额外的软件开销,此开销对有效USB电源的分类和最佳使用是需要的。若设备负载电流限制到100mA(在USB中称之为“一单元负载”),则任何USB主机、自供电插孔可以对设备供电。对于这样的设计,一个非常基本的充电器和稳压器电路示于图3。

  每当器件连接USB或插入AC适配器时,此电路就为电池充电。在同一时间,系统负载总是连接到电池,在这样的情况下,通过简单的线性稳压器(U2)可提供高达 200mA电流。若系统连续地汲取这样的电流量而电池正在以100mA电流从USB充电,则电池仍将放电,这是由于负载电流超过了充电电流。在大多数的小系统中,峰值负载只发生在总工作时间的一小部分时间内,所以只需要平均负载电流小于充电电流,电池仍将充电。当连接AC适配器时,充电器(U1)最大电流增加到350mA。若在同一时间连接USB和AC适配器,则AC适配器自动处于优先供电的地位。

  U1的一个特性是USB规范所要求的(也是一般充电器的法则),即决不允许电流从电池或其他电源输入回馈到电源输入。在一般充电器中,用输入二级管可保证做到,但最小的USB电压 (4.35V)和所需的锂离子电池电压(4.2V)之间的差值很小,甚至用肖特基二极管也是不合适的。基于此原因,在U1 IC中断开全部反向电流通路。

  图3的电路有一些局限性,使它不适于一些可充电的USB设备。最明显的局限性是其相当低的充电电流,使得对大于几百毫安一小时的锂离子电池充电耗费时间很长。第二个局限是负载(线性稳压器输入)总连接到电池。在这种情况下,系统不能够在插入后立即工作,这是因为电池深度放电,在电池达到一个足够的电压使系统工作之前有一段延迟时间。

  负载切换和增强型电路

  在更先进的系统中,充电器或围绕充电器需要一些增强性能。这包括可选择的充电电流以适应不同电源或电池的供电能力,插入电源时的负载切换以及过压保护。图4所示电路增加了这些功能,它是借助于充电器IC电压检测器驱动的外部MOSFET实现的。

  MOSFET Q1和Q2以及二极管D1和D2旁路电池,直接连接有效(USB或AC适配器)电源输入与负载。当电源输入有效时,DC输入具有优先地位;U1防止在同一时间两个输入都有效。二极管D1和D2防止通过“系统负载”电源通路产生的输入之间的反向电流,而充电器具有内置电路排除通过充电通路(在BATT)的反向电流。

  MOSFET也提供AC适配器过压保护(高达18V)。欠/过压监控器使AC适配器电压只在4V和6.25V之间。

  MOSEFT Q3在不存在有效外部电源时导通,使电池连接到负载。当USB或DC电源连接时,PON(电源开关)输出立即断开Q3,使电池与负载断开。系统在加外部电源时能立即工作,既使电池深度放电或损坏也能立即工作。

  当连接USB时,USB器件与主机通信决定负载电流是否可以增加。若主机允许,负载开始在一个单元负载并增加到5个单元负载。5到1个单元负载的电流范围对于一般充电器(不是设计用于USB)来说存在一个问题。一般充电器的精度,尽管可满足高电流要求,但通常在低电流设置方面不能满足要求,这是由于电流检测电路的偏差造成的。其结果是小范围充电电流(1个单元负载)必须设置得足够低,以保证不会超过100mA限制。例如,对于500mA的10%精度而言,输出必须设置为450mA,以保证它不会超过500mA。这仅仅是可接受的;然而,为了保证低充电电流不超过100mA ,其额定电流必须设置为50mA,而最小值可能是0mA,这显然是不可接受的。若USB充电在两个范围都有效,则需要有足够的精度,使得最大可能的充电电流不超过USB限值。

  在某些设计中,系统电源要求用小于500mA USB预算分别供电负载和充电电池是做不到的,但用AC适配器就不成问题。图5所示电路(图4的简化子系统)是一个经济的连接方法。USB电源不直接接到负载。充电和系统工作仍然发生在USB电源,但系统保持与电池的连接,其限制和图3一样:在连接USB时,若电池深度放电,则系统可以在工作前有一段延迟。若连接DC电源,则图5工作状态与图4相同,无等待时间,与电池状态无关,这是因为Q2截止,通过D1系统负载从电池转到DC输入。

  镍氢电池充电电路

  尽管锂离子电池能为大多数便携装置提供最好的性能,但NiMH(镍氢)电池仍然是低成本设计的可行选择。在负载要求不是太严格时,保持低成本的一个好方法是用NiMH电池。这需要一个DC-DC变换器升压,一般从1.3V电池电压提升到器件可用的电压(一般为3.3V)。由于任何电池供电器件需要稳压器,所以,DC-DC变换器仅仅是一个不同的稳压器。

  图6所示电路,用独特的方法为NiMH电池充电,并且不用外部FET在 USB输入和电池之间切换系统负载。“充电器”实际上是一个工作在电流限制下的DC-DC升压变换器(U1)。以300和400 mA之间的电流为电池充电。尽管没有精密的电流源,但它具有适当的电流控制,甚至在电池短路时也能够保持电流控制。DC-DC充电拓扑相对于一般线性方案的最大优势是能有效地利用有限的USB电源资源。在以400mA电流NiMH电池充电时,电路从USB输入仅汲取150mA。而充电时剩余350mA用于系统。

  二极管D1实现从电池到USB的负载拉出。不连接USB时,升压变换器产生3.3V输出。连接USB时,D1上拉DC- DC升压变换器(U2)输出到4.7V左右。当U2输出上拉时,它自动关闭而从电池汲取的电流小于1mA。在USB连接时,若对于输出从3.3V变换到 4.7V不能接受,则可以加入一个与D1串联的线性稳压器。

  此电路的限制是依靠系统来控制充电结束。U1仅仅做为一个电流源,若长期不管它,它将会过充电电池。R1和R2置U1的最大输出电压为2V,做为安全限值。“Charge Enable”(“充电使能”)输入起到系统结束充电作用以及枚举前降低USB负载电流的作用,这是由于充电器的150mA输入电流大于一个负载。■

  

  图4 SOT-23功率MOSFET可增加有用的性能(如过压保护和加外电源时断开电池)。当电池充电无负载时,有效电源直接驱动系统。

  

  图5 简单的设计使USB电源不直接接到负载,而是由DC输入到负载。当USB连接时,系统仍然由电池供电,而电池也正在充电。

  

  图6 简单的NiMH充电/电源配置自动传送电源到USB,而设有复杂的MOSFET开关阵列。

关键字:USB  电池充电器 编辑:探路者 引用地址:USB电池充电电路

上一篇:100万毫安时的移动电源你见过吗?
下一篇:手摇发电移动电源

推荐阅读最新更新时间:2023-10-12 22:27

遭遇USB接口动力不足的常见解决办法
现在USB接口的设备使用频率越来越高,尽管这种设备使用起来非常简单,但如果要想用好它,还必须要掌握一些使用技巧,否则的话将会遇到许多稀奇古怪的故障,从而影响USB设备的使用效率。这不,使用USB设备最常碰到的问题,就是它的动力之源——供电不足的问题;为了有效解决USB接口动力不足的故障,本文下面特意总结了一些应对措施,希望能对各位带来用处!   如何识别USB动力不足 一般来说,USB设备插入到Windows 2000以上系统中时,它就能被系统自动识别出来,并且能够正常工作;可许多动力不足的USB设备插入到计算机系统后,常常会表现出如下故障现象: 1、计算机系统可以自动识别出USB设备,而且在安装该设备的驱动程序时也
[嵌入式]
基于USB接口的炮弹测速系统设计
引 言   目前弹丸初速测量的主要方法有激光测量法、红外线测量法、线圈靶法。由于火药气体对光的污染,对激光测量法和红外线测量法都有一定的影响,火炮的强大机械冲击也会影响测量的性能;野外作业还需要测试系统便于携带。本文阐述从分立逻辑器件测量炮口初速改装为应用 CPLD 测量炮速,提高了测量系统的集成度,且传输接口采用的是目前流行的串行高速数据传输接口USB 2.O接口技术。该接口具有操作方便、速度快的特点,其理论最大传输速度为480 Mbps,故炮弹测速的可靠性和方便性大大提高,具有非常重要的现实意义和广阔的应用前景。   1 测量原理   首先要求在炮口的末端安装两个间距为s(20cm)的感应线圈靶;线靶传感器输出端
[单片机]
基于<font color='red'>USB</font>接口的炮弹测速系统设计
三星Galaxy S20系列成首款获USB快充认证的手机
IT之家获悉,三星Galaxy S20系列旗舰新机成为第一款获得USB快速充电认证(USB Fast Charger certification)的智能手机。   据IT之家了解,要获得USB快速充电认证,智能手机必须支持USB Power Delivery(USB PD)3.0规范的可编程电源(PPS)功能。此功能使智能手机可以在充电时更好地管理热量,从而为消费者提供更快的充电体验。此外,经USB快速充电器认证的充电器向后兼容支持USB Type-C和USB PD的设备。   三星电源解决方案副总裁Kisun Lee说:“ Galaxy S20系列已通过认证,符合USB标准,这意味着Galaxy S20已达到业界最高标
[手机便携]
DIALOG推出内置电池电量计的USB交换式充电器IC
面向中国LTE智能手机市场,DA9150交换式充电器解决方案集成了强劲的10W USB充电功能和最精准的电池电量计。 中国北京,2014年6月5日,高度集成电源管理、AC/DC、固态照明和蓝牙®智能无线技术提供商Dialog半导体有限公司(法兰克福证券交易所代码:DLG)推出了一款内置电池电量计的高效交换式充电器IC – DA9150。该款IC是面向中国市场中采用USB充电方式的智能手机、平板电脑以及新兴可穿戴设备。 其内置ARM® Cortex™M0处理器为电源管理和内置的电池电量计功能提供卓越的数字处理能力。电池电量计测量电池的电荷状态,可以实现高至99%的精确度,对于日常生活中日益依赖移动设备的消费者来说,他们在
[手机便携]
STC12C2052AD做的手机电池充电器
/******************* C语言运算符优先级 1级优先级 左结合   () 圆括号    下标运算符   - 指向结构体成员运算符   . 结构体成员运算符 2级优先级 右结合   ! 逻辑非运算符   ~ 按位取反运算符  ++ 自增运算符  -- 自减运算符  - 负号运算符 (类型) 类型转换运算符 * 指针运算符 & 地址与运算符 sizeof 长度运算符 3级优先级 左结合   * 乘法运算符   / 除法运算符   % 取余运算符 4级优先级 左结合   + 加法运算符   - 减法运算符 5级优先级 左结合    左移运算符   
[单片机]
RSA306B USB频谱分析仪的功能特点及应用范围
RSA306B USB接口实时频谱分析仪使用电脑和泰克SignalVu-PC射频信号分析软件,为9K~6.2GHz信号提供实时频谱分析、流式捕获和深入信号分析功能,且价格低、携带方便,特别适合现场、工厂或学术机构使用。 主要性能指标: ●9kHz ~ 6.2GHz频率范围,满足各种分析需求 ●+20dBm ~ -160dBm测量范围 ●符合Mil-Std 28800 Class 2环境、撞击和振动规范,用于严酷的环境 ●40MHz采集带宽,对现代标准执行宽带矢量分析和宽带实时分析 ●以100%侦听概率捕获持续时间最短100ms的信号 主要特点: ●标配泰克SignalVu-PC软件,提供全面的频谱分析功能 ●SignalV
[测试测量]
基于嵌入式Linux与S3C2440双USB接口的视频存储
  针对长途客车“三超”(中途超载上人,超时,超速)以及在非正常停靠站私自停车上人导致的客车超载,同时目前市面上视频监控设备由于体积大、成本高等,使其难以推广应用在车辆中等问题,整合USB摄像头低成本、USB存储介质较SD(Secure Digital Memory Card)卡存储速度更快、支持更大容量等优点,提出了基于嵌入式。Linux及S3C2440平台的双USB接口车载视频存储方案。本方案主要利用单片机判别模块采集车辆行驶过程中运动状态信息(是否超速,存在急刹车、中途停车超时等),并结合车门在车速为零时的开闭对长途客车在非正常停靠点超载上人进行主动视频监控,便于以后的责任追究和认定,为监控中心的管理提供辅助。    1
[嵌入式]
昆腾KT0206芯片模组方案应用于USB手机直播声卡游戏耳机虚拟音效
KT0206是天惠微代理昆腾KT Mico全新一代低功耗集成FLASH,功率放大器,DSP音效的芯片。具有风声消除,静噪,虚拟环绕,3D漫步,变声等效果。适用于手机声卡和游戏耳机音效等应用场景。KT0206由于更高的集成度,该模组外围电路得到了进一步精简,可以使模组小型化设计。 手机直播方案 KT0206模块性能 高性能DAC(24bits 8~96KHZ) 集成DSP音效 内置低噪声麦克风预防大和偏置电路(躁低5uVrms,增益-6db~44db可调) 集成耳机功率放大器,无POP音,无需隔直电容(驱动16/32ohm,最大功率60mM) 音频插入检测,耳机麦克风检测 集成OMTP和CtIA耳机自动识别,自动适配 支
[嵌入式]
昆腾KT0206芯片模组方案应用于<font color='red'>USB</font>手机直播声卡游戏耳机虚拟音效
小广播
最新电源管理文章
换一换 更多 相关热搜器件
随便看看
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved