由于路灯工作于夜间时段,工作电压从傍晚点亮时的180V到深夜时的260V,工作环境十分恶劣,不但大大缩短了灯泡的使用寿命,而且造成了电能的极大浪费。针对此现象特设计制作了100A路灯节电器,可用于40盏250W钠灯或汞灯泡的供电线路中。经使用效果良好,不但灯泡损坏率明显降低,节电效果显着,而且大大减少了维修人员的工作量。
下图是100A路灯节电器的电原理图,右图是双面印制板总图。
一、电路原理
目前城市道路照明光源主要是钠灯和汞灯,其工作电路由钠灯或汞灯泡、电感式镇流器、电子触发器等三部分组成,功率因数不接补偿电容时为0.45,接补偿电容时为0.90.整体呈现感性负载性质。本路灯节电器的工作原理,就是在供电回路中,串接一个合适的交流电抗器。电网电压低于235V时,电抗器被短路不起作用;电网电压高于235V时,电抗器投入运行,保证路灯的工作电压不会超过235V。
整个电路由电源、电网电压检测与比较、输出执行机构等三部分组成,电原理图见下图。
电源电路由变压器T1、二极管D1~D4,三端稳压器U1(7812)等元件组成,输出+12V电压,为控制电路供电。
电网电压检测与比较由运放U3(LM324)、U2(TL431)等元件组成。电网电压经电阻R9降压,D5半波整流.C5滤波,得到7V左右的直流电压作为取样检测电压。取样检测电压经以U3B(LM324)组成的低通滤波器滤除纹波.送到比较器U3D(LM324)与基准电压进行比较。比较器基准电压由电压基准源U2(TL431)提供。电位器VR1用于调节取样检测电压的幅度,VR2用于调节基准电压。
输出执行机构由继电器RL1及RL3、大电流航空接触器RL2、交流电抗器L1等组成。当电网电压低于235V时,比较器U3D输出低电平,三机管Q1截止,继电器RL1释放,其常闭触点接通航空接触器RL2的供电回路,RL2吸合,电抗器L1被短路不起作用;当电网电压高于235V时,比较器U3D输出高电平,三机管Q1导通,继电器RL1吸合,其常闭触点断开航空接触器RL2的供电回路,RL2释放,电抗器L1接入路灯供电回路,过高的电网电压由其承担一部分,保证路灯的工作电压不会超过235V。发光管LED1用于指示继电器RL1的工作状态.LED2用于指示航空接触器RL2的工作状态,压敏电阻MY1用于触点灭弧。
继电器RL3的作用是减小航空接触器RL2的功耗,因为RL2启动线圈电阻仅4Ω,保持线圈电阻70Ω左右,加直流24V时,启动电流为6A,维持电流也大于300mAo通过继电器RL3切换航空接触器RL2的线圈电压,减小保持功耗。原理是:RL2启动时,其常闭辅助触点短路了继电器RL3的线圈,RL3释放,常闭触点把变压器T1的高电压端28V接入RL2的桥式整流输入端;RL2启动后,其常闭辅助触点断开,继电器RL3得电吸合,常开触点把变压器T1的低电压端14V接入RL2的桥式整流输入端,以50%的启动线圈电压,来维持航空接触器RL2的吸合状态。
二、元器件选取
电路元器件除航空接触器RL2、变压器T1、交流电抗器L1外都是普通常用件。
变压器T1用E122×33铁心绕制,初级用φ0.21漆包线绕1250匝,次级用φ0.70漆包线绕160匝,中间抽头。交流电抗器L1用CD25×50
xl00铁心、6x3mm纱包扁铜线绕制,气隙2mm,电感量1.2mH。航空接触器RL2型号为MZJ-200N24V,这是一个比较难购买的器件。电路其他元器件参数如附图标注。
三、制作与调试
在原理图所示元器件中,航空接触器RL2、变压器Tl、交流电抗器L1、整流桥QLl、压敏电阻MY1、发光管LED2、电阻R15等均不在印制板上,其他元器件都焊接于印制板上,两者通过12线接插件XH3.96-12P连接。航空接触器RL2、交流电抗器L1、输入输出总线之间一定要用150A接线鼻和M8螺栓可靠的连接。
整个电路连接好后,把变压器T1接到调压器上,首先使输出电压为220V,调节电位器VR1,使取样检测电压为7V左右;然后把调压器输出电压调为235V.调节基准电压电位器VR2使继电器RL1刚刚动作即可。
上一篇:保护UUT的电源去耦器
下一篇:大功率区域照明LED驱动电源方案
Vishay线上图书馆
- 选型-汽车级表面贴装和通孔超快整流器
- 你知道吗?DC-LINK电容在高湿条件下具有高度稳定性
- microBUCK和microBRICK直流/直流稳压器解决方案
- SOP-4小型封装光伏MOSFET驱动器VOMDA1271
- 使用薄膜、大功率、背接触式电阻的优势
- SQJQ140E车规级N沟道40V MOSFET
- MathWorks 和 NXP 合作推出用于电池管理系统的 Model-Based Design Toolbox
- 意法半导体先进的电隔离栅极驱动器 STGAP3S为 IGBT 和 SiC MOSFET 提供灵活的保护功能
- 全新无隔膜固态锂电池技术问世:正负极距离小于0.000001米
- 东芝推出具有低导通电阻和高可靠性的适用于车载牵引逆变器的最新款1200 V SiC MOSFET
- 【“源”察秋毫系列】 下一代半导体氧化镓器件光电探测器应用与测试
- 采用自主设计封装,绝缘电阻显著提高!ROHM开发出更高电压xEV系统的SiC肖特基势垒二极管
- 艾迈斯欧司朗发布OSCONIQ® C 3030 LED:打造未来户外及体育场照明新标杆
- 氮化镓取代碳化硅?PI颠覆式1700V InnoMux2先来打个样
- 从隔离到三代半:一文看懂纳芯微的栅极驱动IC