SoC电源管理中调节器面临的命运

最新更新时间:2013-11-17来源: 互联网关键字:SoC  电源管理  分布式电源网络 手机看文章 扫描二维码
随时随地手机看文章

越来越复杂的SoC在一个管芯中集成很多系统组件 ,这在总体上简化了系统设计人员的工作。但是这些芯片也导致电源供电子系统越来越复杂。以前从供电连接器到IC连接Vcc的布线是非常简单的任务,而现在却成为与系统中其他部分一样复杂的有源网络设计。
 

SoC的供电要求越来越高,使得这种设计也越来越复杂。好在设计人员可以选择在电路板级来处理这些任务,SoC开发人员希望将电源网络组件置入到芯片中以期有所帮助。但是最终,电源设计人员仍然要做出一些很难的决定。在决定之前,他们要进行一些模拟电路仿真工作。


不断增长的需求


集成是有成本的。 SoC设计人员在其图纸上画出各种电路,这类电路都有自己的电压、噪声、排序和瞬变响应要求。移植到尺寸更小的电路上不但能够实现集成,而且还降低了供电电压。这一发展趋势也同时增大了峰值工作电流、缩小了噪声余量,使得动态电源管理越来越复杂。


复杂度的提高最明显的结果就是SoC使用的外部电源数量迅速增加 ( 图1 ) 。例如,一片高端FPGA会有15条外部驱动的电源轨。它们都连到哪里?


图1. 一片现代SoC需要很多不同的供电线路,每条线路都有自己的稳压和调理要求。


答案之一是不同的电压需求。在FinFET工艺出现之前 , 内核逻辑供电电压一直在大幅度降低 , 但在1V附近却停滞不前。而其他类电路在这方面远远落在了后面。按照工业标准, I/O单元只能使用特定的供电电压。SRAM单元需要的电压要比逻辑级稍高一些,以保证可靠的全速工作,待机时的电压要低很多。高精度模拟电路希望有较高的电压以降低抖动,提高噪声余量。这些各种各样的需求导致供电线路数量的急剧增长。


但是 , 电压数量还不是唯一的问题。某些SoC电路——特别是低噪声放大器、锁相环(PLL) ,以及物理接口等都有非常严格的供电噪声限值。即使电压相同,这些需求也导致电路无法共享同一条噪声源供电线路,例如,数字逻辑或者大电流I/O单元等。因此,需要增加低噪声电源。


非常有意思的是,增加供电线路的另一需求是来自电源管理。数字设计人员越来越多的采用了动态低功耗技术——例如,精细粒度时钟选通、随时供电选通和电压调整等,使用这类技术的电路对其供电线路瞬变响应的要求特别高。负载在微秒甚至更小的量级上变化。为能够响应来自SoC的命令,电压应不断变化。这些负载实际上可以采用不同的恒定电压源或者噪声敏感电压源。


排序也需要单独的供电线路(图2) 。在很多SoC中,对上电顺序有要求——在某些情况下,对关电顺序也有要求。这种时序要求使得电路提供不同的供电线路,不然可以共享一个电源。

 


图2. 正如这一FPGA所示,复杂的SoC上众多的电源线,通常都有严格的上电排序要求。

找到策略


系统设计人员会面对SoC上大量不同的电源线 , 遇到棘手的问题。据Altera公司电源业务部研究员兼首席技术官Ashraf Lotfi,解决方法一般是采用某种分布式电源网络。


“一般而言,您会看到在电路板上有体积较大的调节器,对系统的12 V或者24 V进行降压,将其分配给每一个负载点调节器。为满足各种需求,您通常都会针对每一电源线提供负载点供电。 ”


由于电源线数量的快速增长,每一新设计都要求进行分析, 以减少调节器的数量。一块电路板上15条电源线还不够理想。因此,设计人员需要解决一些关键问题。在这种特殊的实现中,这些电源线的电压、噪声和排序要求能够支持它们共享一个调节器吗? 如果不能,是否可以采用一条电源线,以稍微不同的电压运行,从而共享调节器——即使是以稍高的功率代价或者稍微降低一些性能?外部排序转换器能有所帮助吗?


Lotfi说 , 减少了调节器数量后 , 设计人员可以把注意力转向优化调节器效率和布局。只要噪声和瞬变响应要求允许,那么,最好的起点是使用高效开关调节器,而不是线性调节器。Lotfi认为,最近的高频开关模块极大的扩展了范围,使得这类替换成为可能。


设计人员还可以针对每一调节器的要求尽量减小电路板面积。模块化结构可以在一个混合封装中实现控制器、电压参考、驱动、电源FET ,以及电感。在某些设计中,反馈补偿也含在封装中。原理上,这种集成使得设计人员不能自由的优化调节器的传送功能,以满足某种电源的特殊需求。而在实际中, Lotfi主张,需要电源设计人员提供反馈无源功能,占用较多的设计时间,增加电路板面积,从而提高灵活性,这样做是值得的。供应商可以为调节器内部组件预设最优传送函数,满足一般要求。Lotfi宣称,而且,把关键组件放到模块中,调节器供应商可以提高开关频率,提高总效率,有效的降低开关噪声,使得模块能够均衡线性调节器的噪声指标。电网验证


无论选择分立调节器还是小型化模块、线性或者开关调节器 , 系统设计团队都面临对选择进行验证的问题 , 包括 , 调节器、外部组件的选择 , 以及布板是否能够满足SoC 的供电要求等。问题已经发展到包括更多的动态行为,还包括抗噪问题,这类验证不再偏重于根据数据资料进行计算,而是进行仿真。 Lotfi说,经验丰富的设计团队会针对整个电网进行行为仿真。这不但要有运行仿真的技巧,而且还要使用电路板上实际组件的精确模型 —— 小规模设计团队可能得不到这些数据。更简单的替代方案是,使用来自SoC供应商的详细参考设计。


但即使有最好的信息和工具, 也无法在SoC外部来解决某些供电问题。有时候,芯片设计人员不得不负责他们所开发的电路的供电问题。


片内调节


管芯电压调节的历史很长了 , 可以回溯到使用电荷泵为低成本微控制器的嵌入式EEPROM提供可编程电压。在很多情况下,其动机是降低材料成本或者便于使用:例如,微控制器应用,完全可以承受电路板上再采用一个电压调节器的成本。


便于使用一直是一个重要的动机 , 即使是非常复杂的芯片。 Altera IC设计经理Weichi Ding指出,先进的FPGA会使用管芯调节功能为配置RAM或者反向偏压电路提供电压。这类应用还不足以满足技术要求,这是因为外部电源的数量会比现在大幅度增加。


相似的, Altera Stratix V FPGA的很多电路也需要单独的调节器 , 因为 , 它们对噪声敏感 , 不能与其他电路共享调节器。这方面的例子包括PLL和物理介质附加电路(PMA) ,后者是直接连接至多GigaHertz串行I/O引脚的I/O模块。所有这些电路在Stratix V FPGA芯片上都有管芯调节器,从而减少了专门用于外部电压轨的引脚数量。


动态电压频率调整(DVFS)也能够满足片内调节的需求 , 只要您调整的足够大。在早期DVFS实现中,软件会预测模块在后面的几十毫秒中对性能的要求,命令硬件暂停操作,根据预测的新负载来调节电压和频率。例如,进入待机模式的手持式设备会完全关断其图形引擎,使CPU回到极慢的时钟,降低工作电压。这一过程虽然非常繁琐,但采用外部调节器进行设置来产生多路输出电压很容易完成它。但是由于很大的延时以及能耗,系统只适用于长期和可预测的变化。


在6月的设计自动化大会上,Intel首席工程师Tanay Karnik描述了当您暂时让DVFS粒度更精细时会发生什么。在管芯的每个处理单元上采用了粒度非常精细的DVFS后, Intel观察到处理器的功耗增大到100W ,远远高于服务器CPU 。 Intel设计人员放弃了由于操作系统原因而采用的毫秒级频率,开发的电路检查输入缓冲,根据后面几行代码来随时选择电压和频率。这意味着,有可能在十几个纳秒内改变频率和电压,而不是在毫秒量级。更快的DVFS意味着,芯片能够更好的满足每一模块的处理能耗需求。但这也对调节器的要求提高了,仅有外部调节器不能满足需求。

Karnik说 , 为达到这一水平的动态响应, Haswell等Intel芯片使用了可编程管芯线性调节器(图3) 。在处理器固有的数字CMOS中实现这些模块,把2.4 V基本电压降低到可选的输出范围内,在0.6-1.8 V之间,步长是12.5 mV。调节器能够以100 MHz的频率改变电压,摆率达到了令人吃惊的100 A/ns,可跟踪电源和时钟选通数字模块产生的极大的负载变化。毫无疑问,如果调节器控制环只有一两厘米的电路板走线和引线框,是不可能实现这类性能的。

图3. 对Intel Haswell芯片电源分配网络的高层描述,显示了内部电压调节器提供了不同的模块。


Karnik提醒说,采用这类设计并不是出于谨慎的目的。Intel选择的实现方法采用了管芯电感,因此, Intel必须在其后端线路处理流程中引入磁体材料。对于设计团队,对调节器网络建模的难度非常大,这会有很多个区域,数百万个仿真单元。必须在全部电压范围内对设计进行验证——在制造时进行测试,还要在全部负载范围内维持效率不变。


Karnik说 :“ 内部调节器占用了很大的管芯面积 , 需要进行规划和调试。但必须这样做。”这不但能够对电压进行瞬时调节,响应快速变化的负载,而且避免了采用7个外部芯片。


如果Intel能够继续指明其他供应商先进SoC的发展方向, 那么,我们将看到对负载点调节的需求越来越大,看到调节器本身逐步转到SoC中,在某些情况下,自己还会有电感。当然,设计总会遇到挑战,SoC供电技术会不断发展。

关键字:SoC  电源管理  分布式电源网络 编辑:探路者 引用地址:SoC电源管理中调节器面临的命运

上一篇:应用DSP重复控制技术在逆变电源系统中的应用
下一篇:一种多功能太阳能移动电源箱的设计方案

推荐阅读最新更新时间:2023-10-12 22:29

便携式应用处理器设计中的电源管理
  当今 便携式 应用处理器 的 电源管理 解决方案的集成度越来越高。总功耗、待机和深度睡眠的电流消耗会影响电池的大小、物料单(BOM)的成本和产品的认知度。                            图1:把LDO调整器直接连接到锂电池是应用处理器电源管理的最简单和成本最低的解决方案。                当设计便携式设备—如智能电话或PDA—的时候,系统设计工程师必须考虑许多电源的变量。随着它们消耗的功率越来越大,智能电话要求高度集成的电源管理解决方案,以便在尽可能最小的PCB面积中实现电池寿命最长的设计目标。   当今的应用处理器需要为内核、I/O、存储器和外部设备等等提供不同的
[电源管理]
便携式应用处理器设计中的<font color='red'>电源管理</font>
电源管理芯片朝多相式与大电流方向发展
  就许多3C电子产品的设计而言,各项电子组件,包括中央处理器(CPU)、 芯片 组、图像 芯片 及内存等,所使用的电压范围都各有不同,且基于省电的目的,这些组件必须根据不同的情境提供不同的效率,也就是说这些组件可能会分别处于休眠、低速运转及高速运转等不同状态。可想而知,这对于电源控制而言是极大的挑战,必须提供复杂的功能满足各项需求,而所有参与控制这些功能的IC集合而成,即被称为 电源管理 单元(PMU)。   不过,正所谓“分久必合,合久必分”,联发科技、高通等提供公板平台的应用处理器厂商,过去倾向于将所有 电源管理 芯片 整合于 电源管理 单元内,但随着智能手机和平板电脑尺寸和功能日新月异,近期已陆续释放出
[电源管理]
日月光凭借aQFN技术获高通、联发科Wi-Fi SoC大单
据业内消息人士透露,日月光凭借独特的aQFN技术获得了高通、联发科大量Wi-Fi SoC订单,并正在积极寻求包括引线框架在内的相关包装材料的额外供应,以完成订单。 据digitimes报道,消息人士称,aQFN技术具有比基于基板封装的解决方案更高的成本效益,因此其已成为高通和联发科主流Wi-Fi 6/6E SoC甚至将于2023 年推出的Wi-Fi 7产品的首选后端技术。 据悉,日月光已在其位于中国台湾南部高雄和北部中坜的工厂以及其位于中部的子公司矽品工厂开始量产第二代 aQFN技术。 日前日月光宣布持续扩大中国台湾投资,斥资13.25亿元新台币与宏璟建设合作兴建中坜厂第二园区厂房,用于扩充IC封装测试产线,新厂预计将于2024年
[手机便携]
一种基于单芯片方案的电子秤系统设计
  电子秤中模数转换电路现在主要有两种实现电路:由分立元件组成的积分电路和单个模数转换(ADC)芯片。积分电路构成的系统外围电路复杂,对个别元器件要求高,存在功耗大、可靠性不高、温度性能差的缺点;而单个ADC芯片构成的系统具有高精度、低功耗、高稳定性的特点,且外围电路简单有利于生产及维护。因此,现在大部分电子秤厂家偏向于使用单个ADC的方案。   随着技术的发展,生产和应用要求更加简单、精度更高、成本更低、功耗更低的解决方案,电子秤电路不断向着更高集成化的方向发展。CSU1221是芯海科技公司自主研发的集成高精度ADC的CMOS单芯片MCU,是国内首创的一款应用于商用电子秤的SoC芯片。    CSU1221 芯片技术
[测试测量]
一种基于单芯片方案的电子秤系统设计
发力SoC和AI芯片,海信宣布联合投5亿成立芯片公司
海信电器股份有限公司与青岛微电子创新中心有限公司共同投资5亿元成立青岛信芯微电子科技股份有限公司。 该公司将主要从事智能电视SoC芯片和AI(人工智能)芯片的研发及推广,并以此加速“造芯”攻势。 青岛信芯微电子科技股份有限公司由海信电器控股,整合了海信现有的芯片研发团队、此前海信收购的东芝电视芯片研发团队,以及宏祐图像科技(上海)有限公司的团队和业务,将主要从事超高清智能电视SoC主芯片及超高清画质引擎芯片的研发推广。
[手机便携]
Silicon Labs多协议无线SoC为智能家居带来更便利的连接
-控客的Kit Pro使用了EFR32MG SoC用于主控设备、交换机和传感器之间的安全连接- Silicon Labs正在扩大与控客(Konke)在智能家居领域内的合作,控客是国内领先的智能设备、物联网(IoT)和智能解决方案开发商和提供商。控客的Kit Pro是一种创新性的整体解决方案,可以快速且方便地实现智能家居的智能化,该方案使用了Silicon Labs的EFR32MG多协议Wireless Gecko SoC和软件。两家公司正在致力于为智慧办公、智慧公寓和其它新型智能应用开发更多样化的解决方案。 杭州控客信息技术有限公司创立于2010年,是一家专注于开发智能硬件、智能家居解决方案和基于云的物联网解决方案的技术公
[物联网]
电源设计小贴士 26:高频导体的电流分布
     本《电源设计小贴士》中,我们将研究自由空间及缠绕结构中导体的有效电阻。图 1 显示了第一个例子。其为自由空间中单条导线的横截面,其携带的是高频电流。如果电流为 直流,则显示为不同颜色的电流密度全部相同。但是,随着频率的增加,电流朝导体外部移动,如红色和橙色所示。这种拥挤情况被称为趋肤效应。透入深度被定义为外表面到电流密度降至外表面电流密度 1/e 的那个点的距离。就铜而言,深度为:   其中 f 单位为兆赫,而深度单位为 cm 。   图 1 高频下电流向外表面聚集   图 2 显示了自由空间中扁平导体的电流分布。它趋向在窄边中流动,而非导体表面都相等。但是,它仍然具有相同的渗透深度。这大大地
[电源管理]
<font color='red'>电源</font>设计小贴士 26:高频导体的电流分布
09上半年中国电源管理芯片市场现状与趋势
  根据CSIA的初步统计,2009年上半年中国电源管理芯片销售额为139.2亿元,与2008年同期的161.3亿元销售额相比下滑13.7%,中国电源管理芯片市场首次出现大幅下滑,在经历2008年金融危机和行业不景气的双重影响之后,2009年上半年中国电源管理芯片市场遭受了更为直接的下游整机产品产量大幅下滑的打击。    受金融危机和行业不景气影响,中国电源管理芯片市场首次出现大幅下滑,其中在3G拉动下网络通信类降幅最小。    2009年金融危机的持续影响以及全球电子产业向中国转移的规模继续大幅缩减,使得中国电子信息制造业遭受沉重打击,如果说前几年中国电源管理芯片市场只是受到下游电子制造业整机产品产量增速下降的影响
[电源管理]
小广播
最新电源管理文章
换一换 更多 相关热搜器件
随便看看
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved