电路分析:平面彩灯控制器的电路图

最新更新时间:2013-11-21来源: OFweek电子工程网关键字:电路分析  彩灯控制器 手机看文章 扫描二维码
随时随地手机看文章

  本彩灯控制器可控制五路彩灯逐行递增点亮,再逐行递减熄灭。然后再将一定数量的彩色灯组合联接,就能营造出平面上色彩绚丽的场景。本控制器采用数字集成块,外围元器件少、电路结构简单,只要元器件完好、装接无误,装后无须调试即可一举成功。

  二维彩灯控制器电路如图1所示,主要由非门IC1(CD4069)、计数/时序分配电路IC2(CD4017)、模拟电子开关IC3(CD4066)及D触发IC4(CD40174)等组成。

图1

  CD4069逻辑功能及引脚如图2a所示,其中非门F1、F2和外接电阻R2、R3、电容C4构成多谐振荡器,产生约3Hz的脉冲方波,供给CD4017作计数脉冲和CD40174作移位脉冲。R3、C4为振荡定时元件,调节这两个元件可改变振荡信号频率,从而控制彩灯色彩的流动速度,以呈现各种不同的视觉效果。另外,CD4069的非门3还用作CD40174复位信号的倒相器。

图2

  CD4069为CMOS数字集成电路,是一种高输入阻抗器件,容易受外界干扰造成逻辑混乱或出现感应静电而击穿场效应管的栅极。虽然器件内部输入端设置了保护电路,但它们吸收瞬变能量有限,过大的瞬变信号和过高的静电电压将使保护电路失去作用,因此,CD4069中未使用的非门F4、F5、F6的输入端{9}、{11}、{13}脚均接到Vss接地端,以作保护。  CD4069多谐振荡器输出端{4}脚送出的脉冲串,一路直接送入CD4017的计数脉冲输入端{14}脚。CD4017为十进制计数/时序分配器,用于产生CD4066模拟开关切换的控制信号。其引脚功能如图2b所示。Cr为复位端,当Cr端输入高电平时、计数器置零态。CD4017具有自动启动功能,即在电路进入无效状态时,在计数脉冲作用下,最多经过两个时钟周期就能回到正常循环圈中,因此本控制器的CD4017未设置加电复位电路。Co为进位输出端,当计数满10个时钟脉冲时输出一个正脉冲。CD4017有CL和EN两个计数输入端,CL端为脉冲上升沿触发端,若计数脉冲从CL端输入,则EN端应接低电平;EN端为脉冲下降沿触发端,若计数脉冲从EN端输入,则CL端应接高电平,否则禁止输入计数脉冲。取自CD4069的计数脉冲从其CL端{14}脚输入,故EN端{13}脚接地。Y0~Y9为计数器的十个输出端,输出端送出的脉冲方波通过隔离二极管VD3~VD12连接成两路控制信号,加到模拟开关CD4066。

  当第一个计数脉冲到来时,CD4017内电路翻转,{3}脚Y0呈高电平,经二极管VD5加到CD4066{12}脚。CD4066为双向模拟开关,其引脚功能如图2c所示,内部含有A、B、C、D四个独立的模拟开关,本控制器使用了其中B、D两个开关。每个开关有一个输入端和一个输出端,这两端可以互换使用。B开关的输入端{11}脚与电源相连、接入高电平;D开关的输出端{8}脚接地;由于两个开关接成串联形式,B开关的输出端{10}脚与D开关的输入端{9}脚相连,作为高、低电平的切换点。另外,CD4066的{12}脚和{6}脚分别为开关B、D的选通端,输入高电平时、开关闭合;输入低电平时开关断开。开关B在其选通端{12}脚输入的高电平作用下,接通{11}脚和{10}脚,{10}脚变为高电平。与此同时,CD4017其余各输出端Y1~Y9均为低电平,于是CD4066开关D的选通端也为低电平,开关D关断,这样不影响{10}脚的电平状态。

  CD4066{10}脚输出的高电平信号直接送入D触发器CD40174的串行输入端{3}脚。CD40174内部含有6个D型触发器,如图2d所示。本控制器将其中的5个连接成串行输入、并行输出的五位移位寄存器。其中D6为最高位触发器,D2为最低位触发器(D1未用),依次排列。每个触发器都有各自的输入端和输出端,高一位触发器的输出端Q与低一位触发器的输入端D相接,只有最高位触发器D6的输入端CD40174{3}脚接收脉冲信号。CD40174{2}{4}脚、{5}{6}脚、{7}{11}脚、{10}{13}脚、{12}{14}脚分别为各相邻触发器输入端和输出端的连接点,作为五位寄存器的并行输出端。各触发器的复位端连在一起,作为寄存器的总清零端。寄存器工作前低电平复位有效,工作开始复位信号应跳变为高电平,并在工作期间一直保持。复位信号是由电容器C3、电阻器R4及CD4069非门3构成的复位电路提供的。在接通电源瞬间,电源电压经C3、R4微分成一个正脉冲,此脉冲通过非门F3倒相,从CD4069{6}脚输出,送入CD40174复位端{1}脚,用以完成寄存器工作前的置零任务。随着时间的延续,C3充电结束,在其负极端形成一个稳定的低电平,经F3倒相后来满足寄存器工作期间的需要。各触发器的时钟脉冲输入端也连接在一起,作为寄存器的移位脉冲输入端。

  移位脉冲取自CD4069{4}脚的脉冲串,从CD40174{9}脚输入。在第一个移位脉冲的上升沿,CD40174{3}脚输入的高电平信号移入触发器D6,寄存器的输出端状态由初始的“00000”变为“10000”,CD40174{2}{4}脚呈高电平。此高电平经隔离电阻R11加到三极管VT1放大、再从其发射极输出,送入双向晶闸管VS1的控制极,驱动VS1导通,第Ⅰ路彩灯因其电流回路形成而被点亮。与此同时,寄存器其余的四个输出端均为低电平,双向晶闸管VS2~VS5无驱动信号而阻断,所控制的四路彩灯Ⅱ、Ⅲ、Ⅳ、Ⅴ不亮。

  当第二个计数脉冲到来时,CD4017计数输出端Y1呈高电平。此高电平从其{2}脚输出,经二极管VD4加到CD4066{12}脚。保持开关B的接通,从而维持CD40174{3}脚串行输入端的高电平状态。在第二个移位脉冲作用下,寄存器的输出状态由“10000”变为“11000”,CD40174{2}{4}脚、{5}{6}脚呈高电平,经三极管VT1、VT2放大,驱动晶闸管VS1、VS2导通。这样在保持第Ⅰ路彩灯点亮的同时,第Ⅱ路彩灯相继被点亮,而其余三路彩灯则仍为熄灭状态。  当第三个计数脉冲到来时,CD4017计数输出端Y2呈高电平。此高电平从其{4}脚输出,经二极管VD6加到CD4066{12}脚。开关B继续接通,继续维持CD40174{3}脚的高电平。第三个移位脉冲使寄存器的输出状态由“11000”变为“11100”,CD40174{2}{4}脚、{5}{6}脚、{7}{11}脚同时呈高电平,经三极管VT1、VT2、VT3驱动晶闸管VS1、VS2、VS3导通。第Ⅰ、Ⅱ路彩灯继续点亮,第Ⅲ路彩灯又被点亮。

  同理,当第四、五个计数脉冲到来时,CD4017计数输出端Y3、Y4依次呈高电平。CD4066保持开关B的接通,CD40174{3}脚维持高电平状态。第四、五个移位脉冲使寄存器的输出状态依次为“11110”和“11111”,晶闸管在控制点亮前三路彩灯的基础上,又依次点亮了第Ⅳ、Ⅴ路彩灯。

  由此可见,五路彩灯是按逐行递增的方式点亮的。

  当第六个计数脉冲到来时,CD4017计数输出端Y5呈高电平。此高电平从其{1}脚输出,经二极管VD3加到CD4066开关D的选通端{6}脚,接通{8}脚和{9}脚,从而使{9}脚接地。同时,CD4017其余的计数输出端均为低电平,CD4066开关B因此而关断,以防止电源被接通的开关D短路。由于CD40174{3}脚与CD4066{9}脚直接相连,于是CD40174寄存器的串行输入端变为低电平。在第六个移位脉冲作用下,寄存器的输出状态由“11111”变为“01111”,CD40174{2}{4}脚输出低电平,三极管VT1截止。晶闸管VS1失去触发信号,在交流电源过零瞬间自行阻断,第Ⅰ路灯熄灭。而寄存器其余四路输出端的高电平,通过VT2、VT3、VT4、VT5和VS2、VS3、VS4、VS5继续控制第Ⅱ、Ⅲ、Ⅳ、Ⅴ四路彩灯点亮。

  当第七个计数脉冲到来时,CD4017计数输出端Y6呈高电平。此高电平从其{5}脚输出,经二极管VD7加到CD4066{6}脚,保持{9}脚接地。以维持CD40174寄存器串行输入端的低电平。第七个移位脉冲使寄存器的输出状态由“01111”变为“00111”,CD40174{2}{4}脚、{5}{6}脚同时输出低电平,三极管VT1、VT2截止。晶闸管VS1因无触发信号而维持其阻断状态;VS2因失去触发信号,在交流电源过零瞬间而阻断。第Ⅰ、Ⅱ路彩灯熄灭。而寄存器其余三路输出的高电平,依然控制第Ⅲ、Ⅳ、Ⅴ三路彩灯点亮。

  同理,当第八、九、十个计数脉冲到来时,CD4017计数输出端Y7、Y8、Y9依次输出的高电平控制CD4066开关D的接通,维持CD40174寄存器串行输入端的低电平。当寄存器的移位脉冲输入端依次接收到第八、九、十个脉冲时,寄存器的输出状态则依次为“00011”、“00001”、“00000”,第3、4、5位的低电平控制晶闸管VS3、VS4、VS5依次阻断,在第Ⅰ、Ⅱ路彩灯熄灭的情况下,第Ⅲ、Ⅳ、Ⅴ三路彩灯依次熄灭。上述说明,五路彩灯是按逐行递减的方式熄灭的。

  当计数器CD4017计数满10个脉冲时,其进位端{12}脚输出一个正脉冲,直接反馈到其复位端{15}脚,使计数器复位,然后开始下一轮的计数过程,这样彩灯就周而复始地循环工作。

  电路中的电阻器R1、电容器C1、C2、二极管VD1、VD2组成电源电路。AC220V市电通过电源电路的降压、整流、滤波及稳压处理,变换成比较稳定的DC12V低压,为各晶体管和集成电路提供工作电压。

关键字:电路分析  彩灯控制器 编辑:探路者 引用地址:电路分析:平面彩灯控制器的电路图

上一篇:电源系统中数字控制器的应用设计
下一篇:新一代功率因数校正控制器改善能效

推荐阅读最新更新时间:2023-10-12 22:29

半桥电流源高频链逆变电路分析
1 引言   半桥电流源高频链逆变电路拓扑如图所示 。图1为采用半桥电流源高频链逆变电路拓扑,其中Q1、Q2组成高频逆变器,Q3、Q4组成一个周波变换器,Tr为高频变压器。图2为半桥电流源高频链逆变电路输出接感性负载的主要波形示意图。半桥电流源高频链逆变电路是以反激式直直功率变换器为基础的,电路工作在电感电流断续模式,通过控制开关管Q1、Q2、Q3、Q4可以得到四种工作模式A、B、C和D,每一种工作模式电路的拓扑结构都相当于一个反激式直直功率变换器,对于不同的负载,逆变器的工作模式顺序不同 。半桥电流源高频链逆变电路具有以下特点:拓扑简洁、控制方案简单、使用器件少、效率高、可靠性高以及良好的动态响应。因而具有较好的应用前景。但在工
[电源管理]
半桥电流源高频链逆变<font color='red'>电路分析</font>
几种助听器电路分析
助听器其实就是一部超小型扩音器,它包括送话器话筒,放大器和受话器,耳机 三部分。
[模拟电子]
几种助听器<font color='red'>电路分析</font>
CRT常见的视频(Video)电路分析
  视频电路是显示器电路的重要组成部分之一。电器性能的好坏直接关系到显示器图像质量的好坏,图像的好坏是显示器整机性能的体现。目前显示器视频回路一般包括以下部分组成:视频信号输入接口电路、视频信号处理电路、视频放大输出电路、亮度控制电路、对比度控制电路、ABL电路、消隐消亮点电路,下面将各部分作分别介绍。   视频信号从显示卡送入MONITOR开始,其信号处理过程如上面方框图1所示。显卡视频信号早期是复合同步视频信号,现在改为分离同步的R、G、B视频信号,首先到VIDEO板的连接器,在连接器上将R、G、B信号送到VIDEO板的接口电路;然后是对视频信号预处理,即将VPP为0.7V视频信号放大到4V左右;接着是视频放大输出电路,将VPP
[测试测量]
单片机复位电路分析
单片机目前已被广泛地应用于家电、医疗、仪器仪表、工业自动化、航空航天等领域。市场上比较流行的单片机种类主要有Intel公司、Atmel公司和Philip公司的 8051 系列单片机,Motorola公司的M6800系列单片机,Intel公司的MCS96系列单片机以及M IC ro Chip 公司的PIC系列单片机。无论用户使用哪种类型的单片机,总要涉及到单片机复位电路的设计。而单片机复位电路设计的好坏,直接影响到整个系统工作的可靠性。许多用户在设计完单片机系统,并在实验室调试成功后,在现场却出现了“死机”、“程序走飞”等现象,这主要是单片机的复位电路设计不可靠引起的。图1是一个单片机与大功率 LED 八段显示器共享一个 电源
[单片机]
单片机复位<font color='red'>电路分析</font>
一个实用的三极管开关电路分析
三极管开关电路作为功率管的控制应用广泛。这里对一个实用开关电路中的各元器件作用作具体分析。   三极管开关控制电路:      上图是一个小功率三极管控制大功率三极管(达林顿管)开关电路。   控制信号通过控制小功率三极管的开关来控制大功率管Q1的开关。    原理分析   三极管开关电路的基本原理就是控制三极管工作在截止区和饱和区工作。电路设计原则等不作赘述,一般的三极管电路参考书籍有介绍。在这里也只讨论图中这些阻容元器件的作用,不讨论其取值计算(因为取值计算需要选定三极管,而且颇为简单)。   图中R1作用是Q2的基极限流;R3作用是泄放掉关断状态时基极电荷,让Q2在低电平时保持截止状态;R4作用是
[电源管理]
一个实用的三极管开关<font color='red'>电路分析</font>
GP02开关电源的电路分析
GP02开关电源属于自激间歇振荡电源,该电源采用三肯公司生产的开关电源专用集成电路 STR - X6759N 和STR-V152。该系列集成电路组成的开关电源具有电源电压适应范围宽,能在 150V~260V交流电压范围内正常工作。输出功率大,可提供 150W以上的功率。该开关电源设计有过流、过热、过压保护电路,一旦开关电源稳压电路中的取样放大电路出故障,造成输出电压过高,或负载过重导致开关电源过流,设计在集成块内部的过压、过流保护电路便会立即启动进入保护状态,使开关电源停止工作,有效避免故障范围扩大。   根据电路结构和作用,该开关电源可分为进线滤波和整流滤波电路、主开关电源电路、副开关电源电路三大部分。    1.进线滤波和整流
[电源管理]
常见电路分析十:万用表自动关机的原理
我们经常使用的UT58A和UT58E都是优利德公司生产的3位半和4位半的万用表。而在使用中会发现有些万用表隔一会就自动关机了,频繁的去打开电源,现将其自动关机的电路分享下。 分析:当SW2置于右边时,电池对C1充电至电源电压,此时万用表处于关机状态。将SW2置于左边时C1通过R3缓慢放电,此时运放接成比较器形式,将此电压和另一分压值相比,输出一高电平驱动晶体管Q2致其导通进而Q1也导通。万用表核心电路已经供电开始工作,当R3上的电压降至反向端的电压时,运放输出低电平,Q2截止,Q1也截止,万用表断电。 现在有些万用表C1的容值变小或漏电变大,导致RC时间常数变小,所以自动关机时间变短。
[测试测量]
常见<font color='red'>电路分析</font>十:万用表自动关机的原理
示波器数学函数有助于热插拔电路分析
数字示波器是大多数工程实验室的常态,但您可能还没有充分探索它们的功能。数字示波器更有趣的功能之一是“数学”通道,它可以以新颖的方式应用于简化和扩展热插拔和负载开关电路的分析。本应用笔记介绍了如何将示波器的探头连接到热插拔电路,以获得MOSFET功耗和负载电容的精确值。MAX5976热插拔方案作为示例器件。 示波器设置 为简单起见,我们选择了MAX5976热插拔方案,该方案将内部MOSFET开关元件与电流检测和驱动电路相结合,以实现完整的电源开关电路。(以下测试方法也适用于由分立元件构建的热插拔控制电路。如图1所示,通过将示波器探头连接到热插拔电路,示波器可以访问计算所需的信号。连接到输入和输出的电压探头提供 MOSFET
[测试测量]
示波器数学函数有助于热插拔<font color='red'>电路分析</font>
小广播
最新电源管理文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved