比比看,DPM/PWM两种逆变电源控制方式谁更优?

最新更新时间:2013-12-14来源: 电源网关键字:DPM  PWM  逆变电源控制 手机看文章 扫描二维码
随时随地手机看文章

电流型双环控制技术在DC/DC变换器中广泛应用,较单电压环控制可以获得更优良的动态和静态性能。其基本思路是以外环电压调节器的输出作为内环电流给定,检测电感(或开关)电流与之比较,再由比较器的输出控制功率开关,使电感和功率开关的峰值电流直接跟随电压调节器的输出而变化。如此构成的电流、电压双闭环变换器系统瞬态性能好、稳态精度高,特别是具有内在的对功率开关电流的限流能力。逆变器(DC/AC变换器)由于交流输出,其控制较DC/DC变换器复杂得多,早期采用开关点预置的开环控制方式,近年来瞬时反馈控制方式被广泛研究,多种各具特色的实现方案被提出,其中三态DPM(离散脉冲调制)电流滞环跟踪控制方式性能优良,易于实现。本文将电流型PWM控制方式成功用于逆变器控制,介绍其工作原理,与电流滞环跟踪控制方式比较动态和静态性能,并给出仿真结果。

三态DPM电流滞环跟踪控制方式

电流滞环跟踪控制方式有多种实现形式,其中三态DPM电流滞环跟踪控制性能较好且易于实现。参照图1,它的基本工作原理是:检测滤波电感电流iL,产生电流反馈信号if。if与给定电流ig相比较,根据两个电流瞬时值之差来决定单相逆变桥的4个开关在下一个开关周期中的导通情况:ig-if>h时(h见图1,为电流滞环宽度,可按参考文献[1]P64式5?2选取)S1、S4导通,UAB=+E,+1状态;ig-if-h时S2、S3导通,UAB="-"E,-1状态;|ig-if|h时S1、S3或S2、S4导通,UAB="0,"0状态。两个D触发器使S1~S4的开关状态变化只能发生在周期性脉冲信号CLK(频率2f)的上升沿,也就是说开关点在时间轴上是离散的,且最高开关频率为f。

仿真和实验表明,iL正半周,逆变器基本上在+1和0状态间切换,而iL负半周,逆变器基本上在-1和0状态间切换,只有U0过零点附近才有少量的+1和-1之间的状态跳变,从而使输出脉动减小。

电流型准PWM控制方式

图1:三态DPM电流滞环跟踪控制方式

综合常规PWM单、双极性工作方式的优缺点,并借鉴滞环控制技术,得到改进的电流环控制电路如图2。S3、S4基本上以低频互补,S1、S2以高频互补方式工作。其基本工作原理:

(1)ig正半周,即ig>0时

比较器CMP1输出高电平,S3一直关断。

时钟信号CLK的上升沿将触发器RS1置1,S1、S4导通,S2关断,UAB为+E,iL按式(1)上升

M1=diL/dt=(E-U0)/L (1)

当iL升至if>ig时RS1翻转,S1关断、S2导通,UAB为0,iL按式(2)变化

M2=diL/dt=-U0/L (2)

若U0>0,则iL下降,至开关周期结束;而若U00,则iL继续上升,此时可能出现三种情况:

①if上升率小于ig,则if相对于ig下降至开关周期结束;

②if上升率略大于ig,开关周期结束时if大于ig而小于ig+h,则下一个开关周期仍保持该状态(UAB为0);

③若if升至ig+h,则CMP3翻转为1、将RS3清零,S4关断,负载通过D2、D3续流,UAB为-E,iL按式(3)下降至开关周期结束。if的峰值不大于ig+h

M2=diL/dt=-(E+U0)/L (3)

(2)ig负半周,即ig比较器CMP1输出低电平,S4一直关断。

时钟信号CLK的上升沿将触发器RS2清0,S2、S3导通,S1关断,UAB为-E,iL按式(3)下降。

当iL降至if时RS2翻转,S2关断、S1导通,UAB为0,iL按式(2)变化:若U0,则iL上升至开关周期结束;而若U0>0,则iL继续下降,此时也可能出现三种情况:

①if下降率小于ig,则if相对于ig上升至开关周期结束;

②if下降率略大于ig,开关周期结束时if小于ig而大于ig-h,则下一个开关周期仍保持该状态(UAB为0);

③若if降至ig-h,则CMP4翻转为1,RS3清零,S3关断,负载通过D1、D4续流,UAB为+E,iL按式(1)上升至开关周期结束。|if|的峰值不大于|ig-h|,即|ig|+h。可见,这也是一种三态工作方式:iL与U0同相时,逆变器工作在PWM方式,在1状态和0状态(或-1状态和0状态)间转换;二者反相时,滞环才起作用,它使逆变器在1,0和-1三种状态间转换。

静态性能的比较

以某逆变器为例,分析和比较上述两种控制方式下的动态和静态性能。电路参数:E=180VDC,L=1mH,C=20μF;调制频率为f;输出:U0=115VAC、fo=400Hz;额定负载:1kVA电流和电压反馈系数分别为0.4167和0.25;电压调节器为PI型:放大倍数Ap=13?5,时间常数τ1=0.27ms;

表1为不同负载和不同调制频率下U0与基准电压Ur的静态误差和U0的THD。

表1:不同控制方式下的稳态性能的比较

图3:起动及突加突降负载动态响应过程

(a)三态DPM电流滞环跟踪控制方式(b)电流型准PWM控制方式静差定义为:

式中U01是U0基波份量有效值,Uon为输出电压额定值。

(1)调制频率f较低时,电流型准PWM波形失真较严重,但其THD随f升高而迅速减小。

(2)功率开关管在电流型PWM方式时的平均开关频率高于滞环方式,这意味着前者的开关损耗较大。

(3)电流型PWM方式下,谐波分量集中在调制频率及其整倍数附近,而电流滞环跟踪控制方式下UAB的谐波比较平均地分布在较宽的范围内,调制频率较低时容易产生较大的噪音。

(4)输出电压静差基本不受电流跟踪方式、调制频率影响,主要取决于电压调节器参数,也受主电路参数影响。

动态性能的比较

由于开关点的离散性,DPM电流跟踪控制方式在控制电路中引入了一个时间常数为1/f的等效纯滞后环节,对闭环系统的稳定性和动态性能有不利影响。图3为起动及负载变化时两种控制方式下的电感电流iL和输出电压U0仿真波形。可见,PWM方式下的动态性能较好,特别是调制频率较低时,差别更明显。但随着调制频率的提高,滞后时间常数减小,滞环方式的动态性能明显改善,接近于PWM方式。

改变PI电压调节器参数(减小放大倍数或增大积分时间常数)可以改善动态响应的稳定性、减小动态压降,但又将增大静态误差,即重载时的电压降落,延长调节时间。换言之,在达到同样动态性能的前提下,电流型PWM控制方式允许较大的放大倍数或较小的积分时间常数,从而获得更好的静态性能。

结语

三态DPM电流滞环跟踪控制方式实现简单,开关损耗较低、失真较小。电流型准PWM控制方式可以获得较好的动态性能,特别是系统稳定性及较小的输出电压降落,电路实现比较复杂,适于调制频率较低或逆变器输出滤波电感L、电容C较小的情况。而调制频率较高时,三态DPM电流滞环跟踪不失为一种简单而性能优良的控制方式。

关键字:DPM  PWM  逆变电源控制 编辑:探路者 引用地址:比比看,DPM/PWM两种逆变电源控制方式谁更优?

上一篇:详解全数字IGBT后极高频机的全过程
下一篇:基于单片机的电动车36V锂电池组保护电路设计方案

推荐阅读最新更新时间:2023-10-12 22:31

凌力尔特公司推出多拓扑电流模式 PWM 控制器 LT8711
ADI 旗下凌力尔特公司 (Linear Technology CorporaTIon) 推出多拓扑电流模式 PWM 控制器 LT8711,该器件能够非常容易地配置为同步降压、升压、SEPIC 和 ZETA 型 DC/DC 转换器,或配置为异步降压-升压型转换器。这款器件用高效率 P 沟道 MOSFET 取代了输出二极管,因此提高了效率,且最大输出电流高达 10A,从而使 LT8711 高度通用,适合多种汽车、工业、太阳能以及通用应用。 LT8711 在 4.5V 至 42V 输入电压范围内运行,产生取决于外部组件选择的输出电压。输出电压处于稳定状态时提供 15μA 无负载静态电流,从而在电池供电系统中延长了运行时间。低纹波突
[电源管理]
改进型全桥移相ZVS-PWM DC/DC变换器
    移相控制的全桥PWM变换器是在中大功率DC/DC变换电路中最常用的电路拓扑形式之一。移相PWM控制方式利用开关管的结电容和高频变压器的漏电感作为谐振元件,使开关管达到零电压开通和关断。从而有效地降低了电路的开关损耗和开关噪声,减少了器件开关过程中产生的电磁干扰,为变换器提高开关频率、提高效率、降低尺寸及重量提供了良好的条件。同时保持了电路拓扑结构简洁、控制方式简单、开关频率恒定、元器件的电压和电流应力小等一系列优点。     移相控制的全桥PWM变换器存在一个主要缺点是,滞后臂开关管在轻载下难以实现零电压开关,使得它不适合负载范围变化大的场合 。电路不能实现零电压开关时,将产生以下几个后果:     1)由于开
[电源管理]
改进型全桥移相ZVS-<font color='red'>PWM</font> DC/DC变换器
C8051F单片机PWM输出程序
//PWM输出脚P0.3 //----------------------------------------------------------------------------- // Includes //----------------------------------------------------------------------------- #include // SFR declarations #include #include //------------------------------------------------------------------------
[单片机]
如何使用ARM7-LPC2148微控制器中的PWM控制LED的亮度
众所周知,微控制器从模拟传感器获取模拟输入,并使用ADC(模数转换器)来处理这些信号。但是,如果微控制器想要产生模拟信号来控制伺服电机、直流电机等模拟操作设备怎么办?微控制器不会产生像 1V、5V 这样的输出电压,而是使用一种称为 PWM 的技术来操作模拟设备。PWM的一个例子是我们笔记本电脑的冷却风扇(直流电机)需要根据温度进行速度控制,这也是通过在主板中使用脉宽调制(PWM)技术来实现的。 在本教程中,我们将使用 ARM7-LPC2148 微控制器中的 PWM 控制 LED 的亮度。 PWM(脉冲宽度调制) PWM 是一种使用数字值控制模拟设备的好方法,例如控制电机的速度、LED 的亮度等。虽然 PWM 不提供纯模拟输
[单片机]
如何使用ARM7-LPC2148微<font color='red'>控制</font>器中的<font color='red'>PWM</font><font color='red'>控制</font>LED的亮度
实战msp430:TB捕获PWM波的脉冲宽度
用TB捕获脉宽 想用TBCCRO捕获脉冲低电平宽度,思路是:tbccr0捕获到下降沿中断,则记下tbccro的值,并改为上升沿触发;捕获到上升沿中断,则记下tbccro的值,改为下降沿触发。 硬件:单片机:MSP430F149 晶振:32K,8M 输入信号:通过无线接收到低电平10ms,高电平7.5ms, 输入口:P4.0(TB0) 要求:捕获低电平的脉宽 软件: 1. 初步思路:通过定时器TBCCR0作为捕获模块对外部输入信号进行捕获:先设为下降沿捕获,如果捕获到,马上修改为上升沿捕获,并马上TBR清零开始计数;如果不过到上升沿,马细奈陆笛兀裈BCCR0的数据记下来,此即为脉冲低电平宽度。
[单片机]
一种改进型零电压开关PWM三电平直流变换器的研究
摘要:介绍了一种带输出饱和电感的移相零电压开关PWM三电平直流变换器,与传统的零电压三电平比较,它具有在较宽负载范围内实现零电压软开关;减小副边占空比丢失;减小输出二极管的寄生振荡及电压尖峰等特点。实验样机表明,该电路整机效率高,采用电流峰值控制后,系统的稳定性高,易于实现中大功率DC/DC变换。 关键词:饱和电感;零电压开关;三电平 A Zero-Voltage- Switching PWM Three- level DC/DC Converter Using Output Saturable Inductor LIU Xue- chao, PAN Hong, ZHANG Bo  Abstract:A novel
[电源管理]
一种改进型零电压开关<font color='red'>PWM</font>三电平直流变换器的研究
微机控制焊接逆变电源电路图
为了解决恒流型电源的不足,引入微机控制和模糊控制技术。系统可相应地进行自由或短路不同控制方案。自由过渡的控制较为简单,其目标即维持合适的电弧电压来保证稳定弧长。短路过渡除了对短路过程的电流和燃弧电压控制外,还要进行短路频率控制。 图3中的低成本单片机系统可代替模拟电子电路的简单切换,即采用“微机+模拟”的方式,实时调整焊接电流和动特性。该设计接口容易,简单可靠,具有更好的可控性。通过工艺试验,在不同的工作状态下,建立了开环条件下送丝速度与焊接电流的适用范围关系,以及与动态性关系。在此基础上,实施适智能控制方案。 图 微机控制焊接逆变电源
[电源管理]
微机<font color='red'>控制</font>焊接<font color='red'>逆变电源</font>电路图
基于C8051的软开关用移相PWM的实现
摘要:通过C8051单片机的可编程计数器列阵PCA来实现软开关用移相PWM触发脉冲,实验结果表明通过此法产生的PWM波调试方便,运行可靠,可应用于多种软开关电路中。 关键词:软开关;移相PWM:C8051 0 引言 软开关技术近年来已经得到了深入,广泛的研究并且发展迅速。但在各种软开关电路中,使开关管实现软开关的触发脉冲比较特殊:例如在典型的Boost ZCT—PWM电路 中,主开关管的触发脉冲超前于辅助开关管的触发脉冲,两者虽然频率相同,但占空比不同。在实验中发现,利用Cvgnal公司的C8051F系列单片机可以方便地产生此种软开关用的、多路占空比不等的移相PWM脉冲。 1 C805lF系列单片机可编程计数器阵列PCA简介
[单片机]
小广播
最新电源管理文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved