如今,工程师将电机控制系统用于数字与模拟技术来应对过去面临的挑战,包括电机速度控制、旋转方向、漂移及电机疲劳等。微控制器 (MCU) 的应用为当代工程师提供了动态控制电机动作的机会,从而使其能够应对环境压力和状况。这有助于延长操作寿命并减少维修,从而降低成本。
目前,电机制造商倾向于制造三相BLDC电机。原因在于BLDC电机不直接接触换向器和电气终端(有刷电机直接接触),因而不仅可降低功耗增加扭矩,同时还可延长操作时间。遗憾的是,与有刷直流或交流电机相比,三相电机控制装置更加复杂。此外,数字与模拟组件之间的关系变得非常重要。
本文将简要探讨在三相BLDC电机应用中使用模拟组件和微控制器时应考虑的问题。同时还将重点介绍适合在直流电压从12V到300V不等的电源下驱动微控制器的电源管理装置及功率电平位移器。
1 对BLDC电机的需求的来源
近来,设计师更喜欢使用高效的BLDC电机。这种趋势适用于众多市场和各种应用。目前,许多应用能够或已经使用BLDC电机替代过时的交流电机或机械泵技术。使用BLDC电机的重要优势包括:
●更高效(达 75%,交流电机仅为 40%)
●更少的热量
●高耐久性(无刷型,所以无磨损)
●可在危险环境下操作更加安全(无灰尘产生,而有刷电机则有)。
在主要子系统中使用BLDC电机还可降低整个系统重量。由于BLDC电机完全采用电子整流,因此更易于高速地控制电机的扭矩和RPM.全球政府正应对电网不足引起的有效功率不足。此外,全球许多地区必须应对需求高峰期产生的电源中断。因此,这些国家正在提供补贴或准备发放补贴,以便更有效地使用BLDC电机。
2 工业系统应用
多数泵、风机、空调、混合器及 HVAC 需要电机驱动。欧盟已经发布法令要求所有新的工业用具使用 BLDC 电机的三相“变频驱动”。
图1 空调原理框图3 BLDC电机驱动
有几种方法可用于驱动BLDC电机;一些基本系统要求如下所列:
3.1大功率晶体管
这些通常是场效应管(MOSFET)或绝缘栅双极晶体管 (IGBT),可承受高压(满足电机的要求)。多数家电使用的电机功率为1/2至3/4马力(1马力=734瓦特)。因此,典型电流能力可达到10A.对于高压系统而言(通常 >350V),可使用IGBT。
3.2MOSFET/IGBT驱动器
通常,可使用一组MOSFET/IGBT驱动器。可选择“半桥”驱动器或三相驱动器。这些解决方案能够操作的电压必须为电机电压的两倍,以应对电机产生的逆电动势 (EMF)。此外,这些装置需要通过设置时间和切换控制提供功率晶体管保护,从而确保底部晶体管打开之前关掉顶部晶体管。
3.3反馈元件/控制
设计师应在所有伺服控制系统中设置一些“反馈元件”。例如光学传感器、霍尔效应传感器、转速计及最简单的“EMF传感”。各种反馈方法都非常有用,主要取决于所需精确度及所需RPM和扭矩。许多消费者电器通常使用反电动势传感的无传感器技术。
3.4模拟数字转换器
在许多情况下,需要设置模拟数字装置,以将模拟信号转换为数字信号,从而将数字信号发送至系统MCU.
3.5MCU 微控制器
所有闭环控制系统(BLDC电机几乎一直属于此群组)均需要MCU,以实现伺服回路控制、计算、纠正、PID控制机传感器管理。这些数字控制器通常为16位,但是复杂性较低的应用可使用8位控制器。
3.6模拟功率/调节器/基准
除了上述组件以外,许多系统还包括辅助电源、电压转换及其他模拟设备,如管理器、LDO、直流/直流及运算放大器。
图2 24V无刷直流电机控制的典型原理框图4 结论
通过在关键任务子系统中使用 BLDC 电机,可减少重量。这意味着在车辆中应用节约更多燃油。由于 BLDC 电机完全采用电子整流,因此更易于高速地控制电机的扭矩和 RPM。全球许多国家面临着电网不足引起的有效功率不足。可以肯定的是,为了更有效地使用 BLDC 电机,少数国家正在提供补贴或正准备提供补贴。BLDC 部署是在避免对我们的生活方式造成不利影响的前提下促进绿色环保,节约全球宝贵资源的趋势之一。
上一篇:交流电机驱动借数字隔离器拉开与传统方案距离
下一篇:UPS不间断电源是如何控制温度及维护保养的
推荐阅读最新更新时间:2023-10-12 22:31
Vishay线上图书馆
- 选型-汽车级表面贴装和通孔超快整流器
- 你知道吗?DC-LINK电容在高湿条件下具有高度稳定性
- microBUCK和microBRICK直流/直流稳压器解决方案
- SOP-4小型封装光伏MOSFET驱动器VOMDA1271
- 使用薄膜、大功率、背接触式电阻的优势
- SQJQ140E车规级N沟道40V MOSFET
- MathWorks 和 NXP 合作推出用于电池管理系统的 Model-Based Design Toolbox
- 意法半导体先进的电隔离栅极驱动器 STGAP3S为 IGBT 和 SiC MOSFET 提供灵活的保护功能
- 全新无隔膜固态锂电池技术问世:正负极距离小于0.000001米
- 东芝推出具有低导通电阻和高可靠性的适用于车载牵引逆变器的最新款1200 V SiC MOSFET
- 【“源”察秋毫系列】 下一代半导体氧化镓器件光电探测器应用与测试
- 采用自主设计封装,绝缘电阻显著提高!ROHM开发出更高电压xEV系统的SiC肖特基势垒二极管
- 艾迈斯欧司朗发布OSCONIQ® C 3030 LED:打造未来户外及体育场照明新标杆
- 氮化镓取代碳化硅?PI颠覆式1700V InnoMux2先来打个样
- 从隔离到三代半:一文看懂纳芯微的栅极驱动IC