基于新DC/AC拓扑结构的高频变压器传递低频电功率技术

最新更新时间:2013-12-22来源: 电源网关键字:拓扑结构 手机看文章 扫描二维码
随时随地手机看文章

1 引言

高频开关技术的发展,使工频变压器从许多领域中退了出来,但是在需要隔离的不间断电源、数码线性功率放大器、要求输出低频正弦波的DC/AC变换器等许多领域中,为了隔离或变换电压的需要,不得不保留了低频变压器。为了克服低频变压器笨重、体积大等缺点,随着高频开关技术的不断成熟,使去掉低频变压器成为可能。图1所示为一种比较典型的电路结构。



图1典型高频逆变电路结构

由图1可知,该电路结构中两次使用了逆变器,一次是为了获得高频,以便利用高频变压器进行变压和隔离,第二次是为了获得工频正弦交流电压。由于多用了一级功率逆变器,因此增加了功率损耗。本文提出了一种新型的用高频变压器传递低频功率的方法,可以直接利用高频变压器同时完成变压、隔离、传递功率的任务,不需要增加一级功率逆变器。从而简化了结构,减小了体积和重量,提高了效率,为实现电力电子设备的高频、高效、高功率密度创造了条件。该电路结构如图2所示。



图2 带逐个脉冲磁复位的逆变器电路结构

2 电路工作原理

2.1 系统组成

如图3所示,该系统由双组合式单端反激变换器、双向高频整流器、高频滤波和控制部分组成。双组合式单端反激变换器实质上是共用一个变压器磁芯和副边的两个单端反激变换器,在控制信号vc的正负半周分别受vg1、vg2的控制进行斩波运行,完成变压、隔离、传递功率的任务。双向高频整流器用两个场效应管代替一般的反激变换器中副边的二极管。两个场效应管分别受vg3、vg4的控制在低频信号的正负半周分时导通,并相互与对方体内的寄生二极管构成通路实现双向高频整流。双向高频整流后得到一列双向脉冲,该列脉冲的包络线与控制信号vc波形相似,频率相同,幅度不同,经高频滤波后,得到与vc同频率的输出电压。控制部分产生与低频控制信号vc同频率的,相位互差(Tc为vc波形的周期)的双列单极性SPWM高频脉冲vg1、vg2和双列低频开关脉冲vg3、vg4,分别控制双组合式单端反激变换器和双向高频整流器,并通过输出电压实时反馈方式,改变SPWM高频脉冲列的调幅深度ma来实现变换器对输出电压的调节。

图3 系统组成框图

2.2 控制部分工作原理

控制原理框图及各点电压波形如图4所示。vc为待传递放大的低频调制信号(如50Hz正弦波信号),vt为单极性等腰三角形高频载波信号(如20kHz高频三角波)。为实现vg1~vg4各点波形,采用以下控制策略。

图4 控制原理框图及各点电压波形图

1)把低频调制信号vc与高频载波三角波信号vt相比较,得到与vc同频率的单极性SPWM信号vg1;

2)把低频调制信号vc经过零比较器比较,得到与vc同频率的低频开关脉冲信号vg3;

3)把低频信号vc反相得到与vc同频率的调制信号-vc,再用-vc与载波信号vt相比较,得到与vg1同频率的相位差的单极性SPWM信号vg2;

4)把调制信号-vc经过零比较器比较,得到与vg3同频率的相位差的低频开关脉冲信号vg4。2.3 主电路拓扑

图5所示为传统的带复位绕组的单端反激变换器,复位绕组N2的匝数等于绕组N1的匝数。当开关管V导通时,D3反向阻断,变压器储能。在V关断时,D3导通,变压器的储能向负载Zl及滤波电容Cf输出;D2导通,N2作为复位绕组将变换器的漏感储能回馈到电源U中,并箝位V上的Uds为2U。

图5 带复位绕组的单端反激变换器

图6所示为新型DC/AC功率传输电路拓扑结构。N1、V1、N3组成一单端反激变换器,它与由N2、V2、N3组成的另一单端反激变换器构成双组合式单端反激变换器,并在控制信号周期的正负半周受vg1、vg2高频SPWM脉冲的控制分别斩波导通。V3、V4组成双向高频整流器,在控制信号周期的正负半周分时导通,并相互与对方体内寄生的并联二极管构成整流电路。

图6 新型DC/AC功率传输电路拓扑

电路处于低频AC正半周时(vg1~vg4信号波形参见图4),vg2=0,V2处于关断状态,vg3为高电平,V3处于导通状态。在高频脉冲周期内,当vg1高电平加到V1门极上时,其等效电路如图7(a)所示。变压器原边,V1随门极施加的高电平导通,电源U、绕组N1和功率开关管V1形成回路。而在变换器副边,绕组N3的极性为上负下正。V3随vg3为高电平而开通。V4随vg4=0而关断,其体内寄生二极管反向关断。副边没有形成电流回路,无电流流过。变压器处于能量储存阶段。因此,电流i1=t线性增加,直至I1p=ton,变压器磁芯储能也增至(其中L1为绕组N1的电感量)。

图7 等效电路图当V1随vg1=0而关断时,其等效电路如图7(b)所示。变压器原边,由于V1关断,漏感储能引起较大反压加在V1两端,由于N1的匝数等于N2的匝数,当UN2=U时,V2的体内寄生二极管D2导通,箝位V1上的Uds为2U。N2此时作为复位绕组与D2构成通路,将变压器中的漏感储能回馈到电源U中;变压器副边,绕组N3此时的电压极性为上正下负,N3、V3、Cf、Zl和V4的体内寄生二极管D4形成回路。此时由D4承担高频整流任务,得到一高频直流脉冲,经Cf滤波后,向负载Zl输出低频电功率,完成该单个脉冲内变换器的能量传递。由SPWM调制原理可知,当频率调制比mf=足够大时,可忽略系统相移,在高频滤波电容Cf上,得到输出电压vo=Vosinω1t与vc同频同相。

2.4 磁复位技术的要求

高频变压器原边,当V1或V2接收SPWM脉冲列导通时,由于调制的频率很低,远远小于高频载波的频率,在低频调制信号的正半周或负半周内,施加在变压器绕组上的是同一方向的电压,变压器磁芯中的磁通将级进地逐渐增加,最终导致磁芯饱和,造成偏磁或单向磁化,导致很大的磁化电流而使电路无法正常工作。本文提出逐个脉冲磁复位技术,就是在每个高频脉冲之后及时采取措施,使每一个高频脉冲引起的磁通增加都回复到零,从而避免磁芯饱和。三角形法生成单极性SPWM波如图8所示(以控制信号为低频AC为例)。图中控制信号电压(调制波)vc=Vsinsinω1t(式中:ω1=2πf1,f1为逆变器输出电压要求的基波频率,也为调制频率;Vsin为控制信号电压的峰值),vt为等腰三角形载波电压,Vtri为载波电压的峰值,载波频率为fs,周期为=Ts。则幅度调制比ma=,频率调制比mf=。当fsf1、mf为偶数,且vc与vt起始相位相等时,vt、vc的波形有如图8所示的关系,以下就这种情况进行讨论。

图8 三角形法生成SPWM波

从时间tn-1到tn是vt的第n个载波周期

tn-1=(n-1)Ts

tn=nTs其顶点=(n-)Ts

故有等腰三角波vt的两段直线方程:当(n-1)Ts

vt1=2Vtrifs[t-(n-1)Ts]当(n-)Ts

vt2=-2Vtrifs(t-nTs)

设vt1、vt2与vc的交点分别在t=t1和t=t2,则

Vsinsinω1t1=2Vtrifs[t1-(n-1)Ts](1)

Vsinsinω1t2=-2Vtrifs[t2-nTs](2)

由式(1)、式(2)可以得到Doff=1-masin(3)Don=masin(4)

式中:Doff=为断开占空比,toff=t2-t1为断开时间;Don=为接通占空比。式(4)表明,在幅度调制比ma保持恒定时,SPWM高频脉冲的占空比Don以基波频率(调制频率)且无相位差地按正弦规律变化。欲使磁芯复位,由变压器磁芯的伏秒平衡规律要求有(忽略管压降)VccDon voDoff(5)式中:Vcc为加在变压器原边绕组上的输入直流电压;vo为变压器副边输出电压。以式(3)、式(4)及vo=Vosinω1t代入式(5)得ma(6)由式(4)知,当sin=1时,该脉冲具有此SPWM脉冲列中最大的占空比Don,若此时Doff满足磁复位要求,则该列SPWM脉冲均满足逐个脉冲磁复位要求。因此,由式(6)知当ma=(7)时变压器磁芯就可实现逐个脉冲磁复位。

3 试验及仿真结果

为验证本电路原理,作了以下仿真和试验:输入直流电压36V;输出交流电压为24V;变压器变比为1:1;低频信号为50Hz正弦波;载波信号15kHz三角波;幅度调制比ma=0.5;功率开关管采用IRF460;开关频率15kHz;输出端高频滤波电容Cf=5μF;负载Zl=200Ω。图9、图10为PSPICE仿真结果。

此时电路最大占空比为0.5,当V1关断,V2体内的二极管D2开通,与N2形成通路,有电流Id(V2),完成漏感储能的回馈,并钳位Vds(V1)至2U。在低频正半周单个高电平脉冲加在开关管V1上时,其电流Id(V1)从零电流开始上升,且波形平滑,说明变压器磁芯磁通已回复到零,且激磁电流未达到饱和电流。

图9 V1、V2功率管上电压波形

图10 V1、V2功率管上电流波形

按照与仿真相同的参数作实验有图11所示输出电压波形。

图11 实验输出电压波形

4 结语

提出了一种新颖的DC/AC功率传输电路拓扑,介绍了它的工作原理,并对高频变压器实现逐个脉冲磁复位的要求进行了数学证明。试验和仿真结果证明这种电路拓扑能较好地完成对低频功率的传递、放大,具有结构简单、体积小、重量轻等优点,可广泛应用于UPS、航空电源、正弦波逆变器、数码线性功率放大器等工程技术领域。

关键字:拓扑结构 编辑:探路者 引用地址:基于新DC/AC拓扑结构的高频变压器传递低频电功率技术

上一篇:变压器基础知识之:环形变压器的特点及其分类和应用
下一篇:基于电力变压器直流电阻的快速测量方法----静态测量法

推荐阅读最新更新时间:2023-10-12 22:32

智能交错:实现高效 AC-DC电源的先进 PFC 控制器
在最近于美国华盛顿举行的 APEC 2009 峰会上,飞兆 半导体 发布了交错式双临界导通模式 (Boundary Conduction Mode, BCM) 功率因数校正 (PFC) 控制器FAN9612。FAN9612 整合了数项新颖的创新性功能,旨在实现性能最大化,减少外部组件数目,提供 一系列稳健的保护功能,并提高效率。 图文:交错式临界导通模式PFC控制器效率最大化完善的转换器保护功能 交错是一种特殊的 并联 方式,即在两个或多个功率级 (通常称之为相位或通道) 之间存在独特的相位关系。为了保持两级设计所拥有的全部纹波 电流 消除优势,必须让各个通道彼此间相差 180 度同差。由于每个通道都是
[电源管理]
智能交错:实现高效 <font color='red'>AC</font>-<font color='red'>DC</font>电源的先进 PFC 控制器
一种电压-电压SPWM控制DC/AC电路的设计
前言   正弦波逆变电源被广泛的应用于电力、邮电、通信、航天等各个领域, 而且随着微电脑技术的不断发展和普及,正弦波逆变电源的应用越来越广。为了满足用户对电能质量的要求,逆变电源在直流输入电压波动的情况下应保持输出电压恒定。传统的电压单环控制一般存在输出电压波动大、动态响应慢等缺点,很难实现精确控制。在逆变电路中为了克服以上不足,采用电压前馈控制技术来解决此问题。本文在单相SPWM逆变的基础上,采用前馈调整三角载波和反馈调整正弦波相结合的电压- 电压复合控制方案,较好地解决了输出电压瞬态偏离问题,且实现简单。 电压- 电压复合控制基本思想   在DC/AC逆变电路中, 输出电压与输入电压存在一定的线性关系。当输入
[安防电子]
一种电压-电压SPWM控制<font color='red'>DC</font>/<font color='red'>AC</font>电路的设计
多路输出直流电压的AC/DC电源模块设计
   1 引言   随着科学技术的不断发展,对设备的状态的检测要求越来越高,从而要求测试设备能够提供高精度的准确测试。要实现高精度的准确测试,测试设备中的电压信号经过电路后要提供准确的电压值,这就对电源模块的准确度提出了很高的要求。   在某测试设备的研制过程中,为了完成测试任务,该设备需要多种直流电压信号,并且要求能够对部分电压信号的输出进行控制。通过分析发现,该测试设备提供给电源模块的空间很小,且三路直流电压输出通过外部高低电平进行控制,现有的电源模块无法满足这一需求;为了解决这一问题,设计了一种输出电压可控的直流电源模块,用来为测试设备提供±12 V、+5 V、+9 V和+6 V 直流电压信号输出,同时能够根据控制信
[电源管理]
多路输出直流电压的<font color='red'>AC</font>/<font color='red'>DC</font>电源模块设计
利用多工作模式提高AC/DC转换器效率
当前在AC/DC应用中,电源转换效率和节能性能的提高变得越来越重要,满负载效率在AC/DC电源设计中一直是一项主要考虑因素。现在我们最关心的是,如何在轻负载和空负载时实现更好的节能性能,因为越来越多的电源适配器在待机模式下由电网进行供电。由于在全球此类适配器的数量增长迅速,因此大家正在开发新的节能标准。 这些新标准概括了对电源的要求,以在不同的工作模式下进行更好的能源利用。为了符合这些新的节能要求,准谐振控制和谷值电压开关(Valley-Voltage Switching)等技术,以及包括跳脉冲(pulse-skipping)在内的多模式工作模式越来越受到行业的关注。其高效性证明了这些技术可以实现AC/DC转换器从空负载
[电源管理]
利用多工作模式提高<font color='red'>AC</font>/<font color='red'>DC</font>转换器效率
几种车用LED驱动方案的比较
摘要:汽车上的转向灯不再是只能一闪一灭了。现在的LED光带中发光颗粒可以以一定次序亮灭,光带看上去像发光虫子朝着汽车转向或者变道的方向直直地游去:现在不仅仅转向灯可以实现上述功能了,全车的照明都已经发展成可以以上述方式开启和熄灭。随着LED灯具应用领域越来越广泛,研究分析用于控制LED灯的转换器拓扑结构也就越来越迫切了。 因为LED灯具有很高的应用灵活性,所以在进行汽车设计时,设计人员可利用LED高可塑性将车辆的灯光作为该汽车品牌外观亮点。而且LED灯发光效率高,使用寿命长,这也从技术角度解释了为什么这种光源越来越受到汽车厂家的青睐。汽车上都有很多种类的灯由LED光源扛起了大梁,包括方向灯、尾灯、近光灯和刹车灯,这些LED灯
[汽车电子]
几种车用LED驱动方案的比较
电信/服务器AC/DC电源设计与注意事项
使用 TI 的模拟 PFC 和 PWM 控制器以及高性能驱动器与收发器的服务器 AC/DC 电源和通信整流器的方框图 (SBD)。 方框图     设计注意事项 目前,AC/DC 电源开发者面临的挑战是实现高功率因数、低 THD 以及线路和负载条件下的高效率、高功率密度或缩小尺寸、高可靠性以及低系统成本。交错 PFC、无桥接 PFC、相移全桥 DC/DC、LLC 谐振 DC/DC 和 ZVS PWM DC/DC 等高级电源拓扑在当今的设计中广泛用于解决这些需求。大多数 AC/DC 电源使用双路 PWM 控制器、PFC 控制器和 DC/DC 控制器。但是,也有使用单路模拟控制器或组合 PFC 和 DC/DC 控制器的低功耗且低
[电源管理]
电信/服务器<font color='red'>AC</font>/<font color='red'>DC</font>电源设计与注意事项
智能交通系统的ZigBee拓扑结构设计与应用
根据交通系统的具体特点,提出了一种基于ZigBee和GPRS网络相结合的方法来实现城市交通干线的覆盖思路,给出了基于ZigBee协议的链状拓扑结构无线通信网络实现方法。该方法可通过计算节点之间的RSSI值来实现智能报站和智能定位功能。 0引言 借助于无线传感网络实现的网络拓扑结构、网络层路由协议和应用层协议在智能交通系统中对保证传输高效、稳定有重要作用。然而,ZigBee协议支持的拓扑结构主要是星型、树状和网状结构,和交通系统中节点的拓扑结构不是很吻合。智能交通系统的网络是一个自组织功能很强的网络,因此,本文根据智能交通系统本身的特点来设计与之相符合的网络拓扑结构,并提出了其在智能报站和定位上的应用。 1 FFD和RFD相结
[嵌入式]
嵌入式Modbus/TCP网关的设计与实现
  随着企业信息化进程的深入发展,实现企业上层的管理网络与现场控制网络的无缝连接显得越来越重要。基于质量分析的生产管理、与安全相关的测试监控都要求现场的仪器仪表能对现场的信息进行处理并能及时被上级监控和管理网络访问与控制,最终纳入到企业信息管理系统统一的框架中。   目前,构成底层控制网络的现场总线技术已获得了广泛的应用。多种现场总线标准并存而相互间无法兼容的问题一直困扰着工业界。将工业以太网应用到现场控制网络已成为当前研究的热点和未来发展的趋势。如何使这种网络结构与工业以太网技术相结合,实现底层生产与上层管理的紧密集成是当前研究的热点。   1 Modbus协议及网关拓扑结构   Modbus现场总线协议是Mod
[单片机]
嵌入式Modbus/TCP网关的设计与实现
小广播
最新电源管理文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved