工程师分享:基于移相全桥电源电路的学习笔记

最新更新时间:2013-12-26来源: 电源网关键字:移相  全桥电源电路 手机看文章 扫描二维码
随时随地手机看文章

在早期的大功率电源(输出功率大于1KW)应用中,硬开关全桥(Full-Bridge)拓扑是应用最为广泛的一种,其特点是开关频率固定,开关管承受的电压与电流应力小,便于控制,特别是适合于低压大电流,以及输出电压与电流变化较大的场合。但受制于开关器件的损耗,无法将开关频率提升以获得更高的功率密度。例如:一个5KW的电源,采用硬开关全桥,即使效率做到92%,那么依然还有400W的损耗,那么每提升一个点的效率,就可以减少50W的损耗,特别在多台并机以及长时间运行的系统中,其经济效益相当可观。

随后,人们在硬开关全桥的基础上,开发出了一种软开关的全桥拓扑——移相全桥(Phase-Shifting Full-Bridge Converter,简称PS FB),利用功率器件的结电容与变压器的漏感作为谐振元件,使全桥电源的4个开关管依次在零电压下导通(Zero voltage Switching,简称ZVS),来实现恒频软开关,提升电源的整体效率与EMI性能,当然还可以提高电源的功率密度。

上图是移相全桥的拓扑图

因为是做理论分析,所以要将一些器件的特性理想化,具体如下:

1、 假设所有的开关管为理想元件,开通与关断不存在延迟,导通电阻无穷小;开关管的体二极管或者外部的二极管也为理想元件,其开通与关断不存在延迟,正向压降为0。

2、 所有的电感,电容都为理想元件,不存在寄生参数,变压器也为理想变压器,不存在漏感与分布参数的影响,励磁电感无穷大,励磁电流可以忽略,谐振电感是外加的。

3、 超前桥臂与滞后的谐振电容都相等,即C1=C2=Clead,C3=C4=Clag。

次级续流电感通过匝比折算到初级的电感量LS远远大于谐振电感的感量Lr,即LS`=Lr*n2》Lr。

PS FB一个周期可以分为12中工作模态,其中正负半周期是对应的关系,只不过改变的是电流在桥臂上的流向,下面我们首先来分析这12个工作模态的情况,揭开移相全桥的神秘面纱。

工作模态一:正半周期功率输出过程

如上图,此时T1与T4同时导通,T2与T3同时关断,原边电流的流向是T1—Lp—Lk—T4,如图所示。

此时的输入电压几乎全部降落在图中的A,B两点上,即UAB=Vin, 此时AB两点的电感量除了图上标示出的Lp与Lk之外,应该还有次级反射回来的电感LS(因为此时次级二极管VD1是导通的),即LS`=n2* Lf,由于是按照匝比平方折算回来,所以LS`会比Lk大很多,导致Ip上升缓慢,上升电流△Ip为△Ip=(Vin-n*Uo)*(t1-t0)/( Lk+ LS`)。

此过程中,根据变压器的同名端关系,次级二极管VD1导通,VD2关断,变压器原边向负载提供能量,同时给输出电感Lf与输出电容Cf储能。

此时, UC2 =UC3=UA=UAB=Vin;UB=0V

工作模态二:超前臂谐振过程

如上图,此时超前桥臂上管T1在t1时刻关断,但由于电感两端电流不能突变的特性,变压器原边的电流仍然需要维持原来的方向,故电流被转移到C1与C2中,C1被充电,电压很快会上升到输入电压Vin,而C2开始放电,电压很快就下降到0,即将A点的电位钳位到0V。

由于次级折算过来的感量LS远远大于谐振电感的感量Lk,故基本可以认为此是的原边类似一个恒流源,此时的ip基本不变,或下降很小。

C1两端的电压由下式给出Vc1=Ip*(t2-t1)/(C1+C3)= Ip*(t2-t1)/2 Clead;

C2两端的电压由下式给出Vc1= Vin- 【Ip*(t2-t1)/2 Clead】;

其中Ip是在模态2流过原边电感的电流,在T2时刻C1上的电压很快上升到Vin,C2上的电压很快变成0V,D2开始导通。

在t2时刻之前,C1充满电,C2放完电,即 VC1= VC3= Vin VC2=VA=VB= 0V

模态2的时间为△t= t2-t1=2 Clead * Vin/ Ip。

工作模态三:原边电流正半周期钳位续流过程

如上图,此时二极管D2已经完全导通续流,将超前臂下管T2两端的电压钳位到0V,此时将T2打开,就实现了超前臂下管T2的ZVS开通;但此时的原边电流仍然是从D2走,而不是T2。

此时流过原边的电流仍然较大,等与副边电感Lf的电流折算到原边的电流,即 ip(t)= iLf(t)/n;此时电流的下降速度跟电感量有关。

从超前臂T1关断到T2打开这段时间td,称为超前臂死区时间,为保证满足T2的ZVS开通条件,就必须让C3放电到0V,即

td ≥△t= t2-t1=2 Clead * Vin/ Ip

此时, UC1=UC3=Vin , UA=UB=UAB=0V

12个工作过程包括:2个正负半周期的功率输出过程,2个正负半周期的钳位续流过程,4个谐振过程(包括2个桥臂的谐振过程与2个换流过程),2个原边电感储能返回电网过程,最后还有2个变压器原边电流上冲或下冲过零结束急变过程。这12个过程就构成了移相全桥的一个完整的工作周期,只要有任何一个过程发生偏离或异常,将会影响到移相全桥的ZVS效果,甚至会导致整个电源不能正常工作。

关键字:移相  全桥电源电路 编辑:探路者 引用地址:工程师分享:基于移相全桥电源电路的学习笔记

上一篇:分享:从基本到完善的RCC电路原理介绍及问题探讨
下一篇:气隙位置对电感参数的影响以及改进

推荐阅读最新更新时间:2023-10-12 22:32

基于AVR和FPGA数字式移相信号发生器的设计
1 引 言 移相信号发生器属于信号源的一个重要组成部分,但传统的模拟移相有许多不足,如移相输出波形易受输入波形的影响,移相角度与负载的大小和性质有关,移相精度不高,分辨率较低等。 而且,传统的模拟移相不能实现任意波形的移相,这主要是因为传统的模拟移相由移相电路的幅相特性所决定,对于方波、三角波、锯齿波等非正弦信号各次谐波的相移、幅值衰减不一致,从而导致输出波形发生畸变。目前利用DDS技术产生信号源的方法得到了广泛的应用,但是专用DDS芯片由于采用特定的集成工艺,内部数字信号抖动很小,不可以输出高质量的模拟信号。随着现代电子技术的发展,特别是随单片机和可编程技术的发展而兴起的数字移相技术却很好地解决了这一问题。在众多的单片机之
[单片机]
基于AVR和FPGA数字式<font color='red'>移相</font>信号发生器的设计
相位滞后的RC移相式振荡电路图
相位滞后的RC移相式振荡电路图
[电源管理]
相位滞后的RC<font color='red'>移相</font>式振荡电路图
基于DSP56F8323的移相全桥软开关DC-DC变换器
1、引言         随着电力电子技术的发展,对电源的要求也越来越高。模拟电路固有的缺点:精度差,所以对放大器的线性、可处理信号的动态范围有很多限制;温度漂移大,系统调试不方便以及器件老化等问题。这些缺点使得模拟电路在一些要求较高或者对接口、兼容要求高,温度、噪声敏感的场合很难达到令人满意的效果。而随着电路集成技术得提高,数字信号处理器(DSP)的迅猛发展,其性能已经可以满足实时控制的要求;体积小重量轻,可用于小型化、便携电源;而其价格的降低,使得数字控制系统有了更为普及的应用。本文将一种新的DSP应用于移相全桥DC-DC变换器中,取得了较好的效果。主电路拓扑移相全桥变换器的工作原理,很多文献中均已给出,这里限于篇幅,不再赘述
[电源管理]
基于DSP56F8323的<font color='red'>移相</font><font color='red'>全桥</font>软开关DC-DC变换器
基于DSP的全桥移相控制感应加热电源研究
   0 引言   随着感应加热电源对自动化控制程度及可靠性要求的提高,感应加热电源正向智能化与数字化控制的方向发展。DSP具有高速的数字处理能力及丰富的外设功能,使得一些先进的控制策略能够应用实践,研究基于DSP的数字控制感应加热电源,可使产品具有更加优良的稳定性及控制的实时性,并且具有简单灵活的特点。本文以TMS320F2812为核心,设计了超音频串联谐振式感应加热电源的数字化控制系统,包括数字锁相环(DPLL)、移相PWM发生与系统闭环控制等。    1 系统结构   串联谐振式感应加热电源主电路如图1所示。采用不控整流加可控逆变电源结构,负载为感应线圈(等效为电感)与补偿电容串联。逆变部分采用带锁相环的移
[嵌入式]
高频脉冲交流中移相控制策略详解一
为克服高频脉冲交流环节逆变器存在的电压过冲现象,本文提出和研究了单极性、双极性 移相控制 策略。两类控制策略可分别使得逆变器功率器件实现ZVS或ZVZCS软开关,仿真和实验结果表明了控制策略的可行性。   1 引言   高频脉冲交流环节逆变器 ,如图1所示。该电路结构 由高频逆变器(推挽式、半桥式、全桥式)、高频变压器、周波变换器(全波式、桥式)构成,具有电路拓扑简洁、双向功率流、两级功率变换(DC/HFAC/LFAC)、变换效率高等优点。      图1 高频脉冲交流环节逆变器电路结构   但这类逆变器在采用传统的PWM技术时,周波变换器器件换流将打断高频变压器漏感中连续的电流
[模拟电子]
高频脉冲交流中<font color='red'>移相</font>控制策略详解一
利用STM32的TIM1/TIM8输出可以移相的互补PWM
前言:TIM1、TIM8是STM32的高级定时器,在高容量的STM32芯片中含有TIM8,低容量芯片只有TIM1。这两个定时器是完全独立工作的。在实际工作中,我们希望他们有时间上的联系。比如做全桥移相的时候,需要两个PWM之间有一个相位差,并且可以调整相位宽度。这点STM32是可以做到的。 思路:TIM1作为主定时器,TIM8作为从定时器。TIM1_CH1/CH1N、TIM8_CH1/CH1N互补输出。另取通道TIM1_CH2产生的OC2REF作为触发源TRGO。设置TIM1_CH2的比较寄存器TIM1_CCR2,设定延时时间。当TIM1_CH2比较溢出,产生OC2REF上升沿,TIM8作为从模式收到TRGI上升沿,产生复位,从头
[单片机]
利用STM32的TIM1/TIM8输出可以<font color='red'>移相</font>的互补PWM
大功率AC/DC开关电源之无源钳位移相全桥电路
在通信行业、电力行业、工业、军工、航空航天等领域,都广泛应用大功率AC/DC高频开关电源。单机功率从几百瓦至几百千瓦,智能化、n+1冗余模式、高效高功率密度、全数字化等是其显着之特点。   有源钳位全桥电路抑制了副边整流管反向恢复所致的尖峰和振荡(换言之,即实现了副边整流管的“软开关”),但桥臂功率器件仍在硬开关环境下工作(即未实现ZVS、ZCS等软开关),随着市场对电源的效率、功率密度等指标不断地提高,在工程设计中,开关频率fs也不断地提升,由于功率器件的开关损耗与开关频率成正比,这使得在大功率应用中硬开关全桥电路越来越难于胜任了为了解决高频下桥臂功率器件的开关损耗,出现了多种ZVS、ZCS等软开关拓扑,移相全桥电路即是其中之一
[电源管理]
大功率AC/DC开关电源之无源钳位<font color='red'>移相</font><font color='red'>全桥</font>电路
基于PSOC 3的移相控制器的设计与实现
引 言: 工业领域中功率调整一般采用可控硅移相控制的方法,通过改变交流电的初始相位(导通角)来控制电源对负载的输出功率。这种电路多使用电位器,因此就不可避免的具有电位器的缺陷:机械磨损、摩擦噪声等。本设计采用PSOC技术,使用PSOC CapSense和按键作为控制信号的输入,通过PSOC进行数字调相,避免了电位器调整的缺陷。   PSOC 简 述 PSoC是Cypress半导体有限公司生产的的可编程片上系统芯片。它主要由8位微处理器,可编程模拟模块和数字模块,外加可编程恒流源(IDAC). I2C,Flash, SRAM等周边外围模块组成,如图1所示。 图1 PSoC的功能框图   因此,PSo
[嵌入式]
小广播
最新电源管理文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved