一个错误预算的实例
让我们用一个实际IC规格,并考虑精度是如何在其中发挥作用的。我们使用一片高端FPGA。FPGA的参数表(如下)确定了保证IC能够正常工作的电源电压。如果电源电压超出了这一范围,器件将不能保证正常工作。
图1:FPGA参数规格让我们关注VCC电源轨,它在0.85V标称值上下有±30mV波动。对于0.85V电源轨,误差是±3.5%。
乍看起来,人们会认为±3% POL能够对此进行处理。不幸的是还有其他一些考虑。
图2:10A POL负载响应
这幅示波器截屏显示了VCC POL输出端上的一个10A负载脉冲。存在大约8mV的纹波和一个20mV的简短压降。这带来的问题是:这些人为干扰是否必须处于±3.3%的规格范围之内呢?该示波器图中的波形出现在POL的输出端。我们必须要问:负载承受的是什么?
图3:功率分配网络(PDN)原理图
这张取自DesignCon 2006“功率分配网络设计方法的比较”(Comparison of Power Distribution Network Design Methods)的PDN原理图示出了封装和芯片之中的滤波。PDN、封装去耦和片内电容可以滤除瞬变的某些高频部分。因此,针对瞬变裕度问题的答案是:要看情况而定。一般来说,只有PDN的封装端将会滤除最高的频率。纹波是另一回事。纹波的频率较低,而且负载引脚上承受什么样的纹波,芯片就将承受什么样的纹波。于是,出于我们进行分析的考虑,我们将假设纹波消耗了误差裕量的一部分,并且忽略掉瞬变。
在纹波为8mV的情况下,我们的误差预算仅剩下了±22mV,也就是说准确度大约为±2.5%。不幸的是,我们并未完成所有的工作。我们必须考虑过压(OV)和欠压(UV)监控器。如果您回顾一下我之前发表的一篇文章“数字电源监控和遥测”,就会了解到OV/UV监控器是负责设定跳变点并具有DAC的比较器。我们所关心的是欠压和过压准确度。
监控器的准确度是误差预算的一部分,因为我们希望把UV监控器的准确度设定得高于规格值,而将OV监控器的准确度设定得低于规格值。这是保证电源轨满足IC电源规格指标的唯一方法。(请注意:虽然我们通常可以给监控器增添某种滤波处理,这样瞬变就不至于使其跳变,但是纹波将始终导致其发生跳变。)
现在,让我们使用LTC3880监控器的精度,它是±2%。在我们的0.85V电源轨上,则是17mV。现在,我们的裕量只剩下4mV!POL输出电压精度现在必须是0.5%!这可以实现吗?
LTC3880数据表显示了监控器工作时的输出精度是±0.5%。我们的电源轨满足了规范,而监控器确保它能够正常工作,在之前的文章中我们谈到,如果不满足规范,会选择性地触发和关断,并向基本电路板管理控制器(BMC)发送故障。
有折中方法吗?
这取决于您所希望的质量水平。如果您从规范中去掉监控器而且依靠控制环,那么所要求的控制环精度是2%,LTC3880提高了4倍。这意味着,它甚至可以支持低于0.85V的电源轨。但是,还有最后一方面我们没有考虑到。当您认为我们已经完成工作了,实际上还有更多的问题需要处理。
裕度调节是怎么样的情况呢?
在生产环境中,电源系统运行于(或超过)高规格值和低规格值,以消除系统中的任何边缘性。在我们的设计场合中,这意味着以±3.5%的准确度运行系统。在裕度调节期间,监控器将稍做“让路”,因为此时的目标是确保系统在整个规格范围内拥有可靠性。
我们要确保在极端情况下能够正常工作,因此,需要通过控制环精度,使电源轨设置能超越极端情况,以保证极端情况甚至超过极端情况的实际值。如果控制环精度是0.5%,那么,我们应该把电源轨设置为±4%。控制环精度如果只有2%(与监控器相似),情况会怎样呢?数值应该是±5.5%。
没什么大问题,对吗?
倘若FPGA应用由于较高裕度值的原因而失去定时裕量,那么裕度测试有可能触发代价不菲的故障。您也许需要给设计增加定时裕量以通过裕度测试,而假如您无法容许增加裕量,则或许将导致良率下降。或者,您也可以减小裕度值并降低质量(放过某些缺陷)。无论采取哪一种方法,遭受损失的不是您就是您的客户。如果您为所应为并正确地设定裕度值,则将延缓项目的进展,而且您还将蒙受良率损失并伤害到自己的底线。而假如您在裕度测试中弄虚作假,那么您的客户就会遭遇损失,因为他们的系统将不具备可靠性。因此,控制环路准确度确实是事关紧要。这是一个大问题。
总结
我们研究了FPGA规格并进行了误差预算。我们发现了其他的一些误差预算组成部分,包括:纹波、控制环路准确度、监控器准确度和裕度准确度。直接对比FPGA的规格和POL的性能指标并不能反映全面的情况。POL的准确度必须大大高于FPGA产品手册给出的规格值,以保证器件的运作处于规格范围之内,并保证两者在整个规格范围内的可靠性,同时在生产中保持高良率。
上一篇:电源生产厂家详解开关电源制造流程四部曲(有图)
下一篇:工程师解析如何把电源的功率限制变为电流限制
推荐阅读最新更新时间:2023-10-12 22:32
Vishay线上图书馆
- 选型-汽车级表面贴装和通孔超快整流器
- 你知道吗?DC-LINK电容在高湿条件下具有高度稳定性
- microBUCK和microBRICK直流/直流稳压器解决方案
- SOP-4小型封装光伏MOSFET驱动器VOMDA1271
- 使用薄膜、大功率、背接触式电阻的优势
- SQJQ140E车规级N沟道40V MOSFET
- MathWorks 和 NXP 合作推出用于电池管理系统的 Model-Based Design Toolbox
- 意法半导体先进的电隔离栅极驱动器 STGAP3S为 IGBT 和 SiC MOSFET 提供灵活的保护功能
- 全新无隔膜固态锂电池技术问世:正负极距离小于0.000001米
- 东芝推出具有低导通电阻和高可靠性的适用于车载牵引逆变器的最新款1200 V SiC MOSFET
- 【“源”察秋毫系列】 下一代半导体氧化镓器件光电探测器应用与测试
- 采用自主设计封装,绝缘电阻显著提高!ROHM开发出更高电压xEV系统的SiC肖特基势垒二极管
- 艾迈斯欧司朗发布OSCONIQ® C 3030 LED:打造未来户外及体育场照明新标杆
- 氮化镓取代碳化硅?PI颠覆式1700V InnoMux2先来打个样
- 从隔离到三代半:一文看懂纳芯微的栅极驱动IC
- 泰克示波器旅行指南 更高带宽、更低噪声、更多通道
- TI E2E中文社区年终回馈,15 块 CC3200-LAUNCHXL 开发板免费申请中……测评赢好礼喽!
- 有奖直播:恩智浦基于RT06F的人脸识别技术解决方案
- 邀请小伙伴一起学AM437x,好礼有你!
- 直播已结束【ST 宽禁带高性能碳化硅(SiC)与氮化镓(GaN)产品技术及不同应用案例分享】(9:30入场)
- 喜大普奔,起底USB Tybe-C 五大干货!
- 热烈庆祝坛友coyoo新书《FPGA设计实战演练》出版,参与讨论即有机会赢新书!
- 【 有奖直播】 掌握潮流~TI DLP®技术在汽车上的创新及全新应用
- 西门子白皮书下载《物联网在电子制造行业的成功应用》
- 听技术大咖侃谈Type-C 测量那些事儿—— 即刻获取能量,轻松闯关赢礼品!