1.引言
无线通信是近些年发展最快,应用最广的通信技术,无线网络技术包括蓝牙、超宽带、ZigBee和Wi-Fi等。ZigBee是一种新兴的无线网络技术,它是基于IEEE802.15.4标准的低功耗个域网协议,其特点是距离较远、低复杂度、自组织、低功耗、低速率、低成本。因此比较适合研究无线通信距离短的问题,可以更好地分析影响传输距离的因素,所以本文就以ZigBee技术为例,根据一些理论公式进行计算分析影响无线传输距离的因素,希望为以后无线模块的选用提供参考。
2.ZigBee应用电路设计
为了测试ZigBee在应用中的传输距离,设计了基于ZigBee的无线传输模块装置,用于测试ZigBee实际的传输距离。如图1所示,左边为无线终端模块整个电路组成框图,用于接收从中心模块发送过来的数据,右边为中心模块,与ZigBee基板相连,通过上位机给终端模块发送数据。ZigBee模块具有自动组网的功能,当中心节点工作之后,它会自动寻找终端节点进行组网。如果终端节点能够接收到组网信号,则终端节点的ZigBee模块就会产生组网端口上的压降,这个压降信号就传递到触发器,触发器打开模拟开关,这样指示灯的压降产生,指示灯开始工作,这就表明ZigBee模块组网成功,既可以开始通信。
3.因素分析
3.1 实际传输距离估算方法
IEEE组织根据802.15.4a信道的特点,在实际环境中进行了实际测量,构建了基于802.15.4a心道、适于UWB(2~10GHz),100~1000MHz的信道传输损耗模型,其基本模型信道损耗计算公式为
其中Pt为发射机发射功率,发射机和接收机的距离为d,接收机的功率为Pr,收发天线的增益为Gr,Gr,Aant为天线衰减因子,S为损耗计算的标准方差,n为距离损耗为考虑频率影响修正系数,d0为参数距离等于1m,fc为参考中心频率等于5G修正系数,kHz(UWB2~10GHz频段),PL0为参考距离下的损耗大小。与自由空间传输方程相比考虑天线收发耦合损耗、反射折射引起的传输损耗与距离频率的变化系数。
对式(1)进行推导得出最大距离方程为:
由上述公式我们可以得知,影响因素包括为天线衰减因子,损耗计算的标准方差,距离损耗为考虑频率影响修正系数,参考距离下的损耗大小等,下面就通过实际测试具体分析各个因素对无线传输的影响。
3.2 具体因素分析
下面通过实际测试得到实验数据对Z i g B e e传输距离进行比对分析,用上述介绍的实验装置测试Z i g B e e实际的传输距离。表2中列出了实验中模块的收发功率,收发天线架设高度,天线衰减因子,收发天线增益,参考距离下的损耗大小,损耗计算的标准方差,行为距离损耗修正系数,频率影响修正系数,天线的馈线长度,天线的架设高度等各种影响因素。
表2中第一组和第二组数据对比,收发天线的架设高度对无线传输的距离有着重要影响,天线架设高度不同,损耗计算的标准方差和距离损耗修正系数不同,收发天线的架设高度增加了两米,则传输距离提高了122米,增幅为88.4%.
第二组和第三组数据对比中可以看出,天线的架设高度相同,无线的工作环境的不同,传输距离也不尽相同,工作环境的不同,损耗计算的标准方差、距离损耗修正系数不同和频率影响修正系数都不相同,这导致在复杂环境中,无线传输的距离大大缩短,仅为户外广阔环境中的53.1%.
第二组和第四组数据得出,天线的增益是影响传输距离的最重要因素,发送天线增益增加八倍之后,传输距离提高了4倍,同时也说明天线增益和传输距离之间不是简单的线性关系。
第一组和第五组数据显示,在天线的外配馈线增加时,传输距离也会相应缩短,在天线增益、工作环境和天线架设高度都相同的情况下,发送天线加长6米馈线,天线衰减因子变大,导致传输距离缩短了48.6%.
第四组和第六组数据显示,其他影响因素相同的条件下,馈线延长6米,传输距离缩短了22.7%.同时和第一组、第五祖对比得出,馈线在影响传输距离中远没有天线增益对传输距离的影响大。
在实际测试中所得到的数据,都经过了实际传输距离估算方法的计算,表2中给出了理论计算和实测值之间的误差,误差都在5%以内,说明测试得出的数据真实可靠。
4.结束语
本文通过自行设计的ZigBee装置实际测试了此装置的传输距离,并根据估算公式对其影响因素作了具体分析,最后分析我们可以得知,收发天线的增益是影响无线传输距离最重要的因素,其次为天线的架设高度,然后为工作环境,最后是天线的馈线长度。
因此为了提高通信距离:第一,最好使用增益大的天线;第二,尽可能的提高天线的有效架设高度;第三,远离干扰较大的工作环境;第四,尽量缩短发射端的馈线长度等这些措施。这样可以提高无线通信的稳定性和可靠性。
上一篇:Intersil推出新一代6A数字开关稳压器
下一篇:光电编码器信号传输的光纤实现
推荐阅读最新更新时间:2023-10-12 22:33
Vishay线上图书馆
- 选型-汽车级表面贴装和通孔超快整流器
- 你知道吗?DC-LINK电容在高湿条件下具有高度稳定性
- microBUCK和microBRICK直流/直流稳压器解决方案
- SOP-4小型封装光伏MOSFET驱动器VOMDA1271
- 使用薄膜、大功率、背接触式电阻的优势
- SQJQ140E车规级N沟道40V MOSFET
- 非常见问题解答第223期:如何在没有软启动方程的情况下测量和确定软启动时序?
- Vicor高性能电源模块助力低空航空电子设备和 EVTOL的发展
- Bourns 推出两款厚膜电阻系列,具备高功率耗散能力, 采用紧凑型 TO-220 和 DPAK 封装设计
- Bourns 全新高脉冲制动电阻系列问世,展现卓越能量消散能力
- Nexperia推出新款120 V/4 A半桥栅极驱动器,进一步提高工业和汽车应用的鲁棒性和效率
- 英飞凌推出高效率、高功率密度的新一代氮化镓功率分立器件
- Vishay 新款150 V MOSFET具备业界领先的功率损耗性能
- 强茂SGT MOSFET第一代系列:创新槽沟技术 车规级60 V N通道 突破车用电子的高效表现
- 面向车载应用的 DC/DC 电源
- 端到端大模型席卷广州车展,智驾行业的一次技术大跃迁
- 主机厂ADAS研究:架构调整、团队整合、拼D2D,一切为了智驾领先
- 新格局 新未来!2024中国汽车充换电生态大会在太原召开
- 本田固态电池5年内上车:续航提升2倍 一次可行驶1000公里
- 逐鹿智驾的“法门”,藏在最新技术趋势里
- 强茂SGT MOSFET第一代系列:创新槽沟技术车规级60 V N通道 突破车用电子的高效表现
- 睿瀚医疗万斌:“脑机接口+AI+机器人”是康复赛道的未来
- 希润医疗孟铭强:手功能软体机器人,让脑卒中患者重获新生
- 柔灵科技陈涵:将小型、柔性的脑机接口睡眠设备,做到千家万户
- 微灵医疗李骁健:脑机接口技术正在开启意识与AI融合的新纪元