对共模扼流圈的高速CCD驱动电路特点深入分析

最新更新时间:2014-01-17来源: 电源网关键字:共模扼流圈  高速CCD  驱动电路 手机看文章 扫描二维码
随时随地手机看文章

电荷耦合器件(CCD)在光电成像领域获得了广泛的应用,它具有高速、低噪声、宽动态范围以及线性响应等优点,然而要使CCD 正常工作,需要成像电路的支持。其中,CCD驱动电路是成像电路的重要组成部分,驱动电路负责把CCD收集的电荷包通过移位寄存器移动到输出节点进行信号电压的输出。由于是串行移位,因此需要高速的驱动电路,而在高速成像领域,驱动电路的工作速度更高。此外,CCD驱动波形的电压幅度往往很高,而CCD的移位寄存器是电容性负载,高速大电压幅度驱动电容性负载需要较大的功耗,因此,基于CCD 的成像系统功耗都相对较大,功耗大会导致CCD驱动器温度较高,温度高会影响系统的可靠性和寿命。

针对这个问题,采用CCD驱动器首先产生低电压的驱动信号,然后利用共模扼流圈进行电压的放大。由于CCD 驱动器的电压降低了,使得CCD 驱动器的自身功耗大幅度下降。由于共模扼流圈的差模电感很小,可以有效避免和CCD 的容性负载产生谐振,因此可以保证驱动信号的质量。

1 CCD驱动电路分析

为了设计高速低功耗CCD 驱动电路,首先对CCD驱动电路进行建模分析。图1所示为CCD 驱动电路的等效模型。其中V 为驱动器的信号输出,Rdrv 代表驱动器的戴维宁等效内阻,Cdrv 代表驱动器的等效电容,Rccd代表CCD内部的走线等效串联电阻,Cccd代表CCD的等效负载电容。可见CCD 驱动电路为RC 充放电电路。

对于RC电路,其功耗可以用公式(1)近似给出。

式中:C 为电容值大小;V 为信号电压幅度大小;f 为信号的工作频率。公式中并不包含电阻R 的项,而实际上功耗则都消耗在电阻R 上,因为电容是不会消耗功耗的。对于相同的电容C ,当电阻值R 较大时,瞬态电流值较小但瞬态电流持续时间较长;当电阻值R 较小时,瞬态电流值较大但瞬态电流持续时间较短。这是公式中没有电阻R 项的原因。

公式(1)还指出功耗和电压的平方是成正比的。因此只要把电压幅度降低就能大幅度降低功耗。而CCD的驱动电压往往很高,例如很多CCD 的复位脉冲驱动电压幅度可以达到10 V.驱动电路的功耗由驱动器的功耗和CCD的功耗两部分组成。驱动器的功耗是由于驱动器内部的寄生电容导致的。例如CCD 驱动器EL7457 的内部电容约为80pF。通过共模扼流圈对电压放大可以使得驱动器的输出电压幅度下降,这样就可以有效地降低驱动器的功耗。2 基于共模扼流圈的驱动电路设计

共模扼流圈是一个紧密耦合的1∶1变压器,其漏电感较小。图2所示为变压器的电路符号,其由线圈电感L1 和线圈电感L2 组成,其互感为M .当L1 = L2 = M时,该变压器就是共模扼流圈。

分析此类含有耦合电感的电路,采用的方法是去耦等效受控源,如图3 所示。把具有耦合的电路拆分成两个独立的支路进行分析。公式(2)和(3)给出具体的计算方法。

根据上述公式可知,当差模信号通过共模扼流圈时,由于磁通量相互抵消,所以就像共模扼流圈不存在一样;当共模信号通过共模扼流圈时,由于磁通量相互叠加,所以共模扼流圈具有很大的阻抗。这里采用共模扼流圈实现高速CCD驱动的电路拓扑[4]如图4所示。图中V1 代表CCD 驱动器,L1 和L2 组成共模扼流圈,其同名端在图中用小圆圈标出。C1 为交流耦合电容,避免变压器直流短路。R1 和C2 为端接网络,用于抵消共模扼流圈的漏电感。R2 代表CCD的等效串联电阻,C2 代表CCD的等效负载电容。共模扼流圈在该电路中的作用是把输入信号的电压幅度放大2倍。其工作原理为输入信号分别从L1 和L2 的非同名端加入。那么L2 产生的磁通会在L1 的两端产生感应电压,该感应电压和加在L1 端的电压叠加从而实现了电压的2倍放大。R1和C2 的取值需要在实际的电路板调试时进行调整以保证输出信号达到最佳。

采用了上述电路后,把CCD驱动器的电压幅度降低了1/2,因此CCD 驱动器的功耗也会下降为原来的1/4。

然而由于R1 和C2 端接网络的存在,会使得功耗会有所上升。但是和直接用驱动器进行驱动相比,功耗还是大幅度下降。3 实验结果

为了实际验证设计的电路,进行了电路板设计制作和测试。测试板的驱动器和共模扼流圈的电路布局如图5所示,CCD驱动器为Intersil公司的EL7457,驱动器的供电为5V。

共模扼流圈采用TDK 公司的ACM4520-901-2P,CCD 采用75 pF 的电容模拟其负载情况。端接网络R1和C2 的取值分别为100 Ω和47 pF.这样通过共模扼流圈后的驱动信号电压被放大为10 V.图6所示为实测的CCD驱动波形,该波形是CCD的复位脉冲,其频率为12.5 MHz,其占空比设计为12.5%,实际波形的占空比和设计值相符。直接采用驱动器10V供电驱动CCD时的电流为71 mA,功耗为710 mW;而采用该电路后,电流为39mA,功耗为195 mW,如表1所示。可见采用共模扼流圈后驱动器的功耗大幅度下降。两种情况下实测功耗都比理论值大,这是因为电路板有较长的走线,走线的寄生电容导致的功耗。

4 结论

本文主要对CCD驱动电路的特点和需求进行了深入分析。文中针对高速CCD驱动电路功耗大的问题,提出了基于共模扼流圈的高速低功耗驱动电路设计方案。该方案中所设计的电路通过共模扼流圈对电压幅度进行放大,从而使得CCD 驱动器输出电压降低,这样有效降低了功耗。由于共模扼流圈的差模电感很小,这样可以避免和CCD 的容性负载产生谐振,可以驱动保证信号的质量。通过实际的电路板进行了测试,驱动波形可以满足要求,且功耗大幅度降低,因此该方案可应用在高速CCD成像电路中。

关键字:共模扼流圈  高速CCD  驱动电路 编辑:探路者 引用地址:对共模扼流圈的高速CCD驱动电路特点深入分析

上一篇:电源设计中片式电阻必须了解的知识
下一篇:教你如何测量判断电容之击穿、漏电和失去容量

推荐阅读最新更新时间:2023-10-12 22:34

四轴飞行器三相六臂全桥驱动电路
四轴飞行器是近来在专业与非专业领域都非常火爆的技术产品。下面这篇文章针对四轴飞行器无位置传感器无刷直流电机的驱动控制,设计开发了三相六臂全桥驱动电路及控制程序。设计采用ATMEGA16单片机作为控制核心,利用反电势过零点检测轮流导通驱动电路的6个MOSFET实现换向;直流无刷电机控制程序完成MOSFET上电自检、电机启动软件控制,PWM电机转速控制以及电路保护功能。该设计电路结构简单,成本低、电机运行稳定可靠,实现了电机连续运转。近年来,四轴飞行器的研究和应用范围逐步扩大,它采用四个无刷直流电机作为其动力来源。无刷直流电机为外转子结构,直接驱动螺旋桨高速旋转。 无刷直流电机的驱动控制方式主要分为有位置传感器和无位置传感器的控制方
[嵌入式]
大功率背光源用LED驱动电路的研究现状与进展
1引言 作为LCD的背光源,LED现在已显露出取代CCFL的趋势。与传统的CCFL相比,LED背光源具有色域宽、色彩还原性好、可控性强、寿命长、不含汞蒸气和其他有害气体等优点。LED背光源还能实现CCFL无法相比的分区域色彩和亮度调节功能,从而更加精确地实现色彩还原和画面的动态调整,在显示不同画面时,可以使亮度与对比度进行动态修正,以实现更好的画质。 据预测,到2013年,将有90%的笔记本电脑和40%的液晶电视使用LED背光源。由于LED是一个低压非线性半导体器件,LED的正向电压会随着电流和温度的变化而变化,需要有驱动电路才能保证其稳定可靠地工作,因此,研究大功率背光源用LED驱动电路的解决方案,是一项具有前沿性和
[电源管理]
大功率背光源用LED<font color='red'>驱动电路</font>的研究现状与进展
面向汽车市场CAN/Ethernet用共模扼流圈的噪声对策事例
1.背景 近年来汽车市场的电子化日趋明显,今后随着新能源汽车的普及,ADAS等附加功能会越来越丰富,每台汽车中搭载的电子设备的数量也会相应增加,并且电子设备的种类也会越来越多样化。 在汽车的电子化进程中,为了实现车内电子设备间的通信,车载LAN的搭载变成了必不可少的存在。由于车载LAN可以进行大量的信息传输,因此它在高速通信方面不可或缺,而且由于对高可靠性的通信品质的需求,因此会使用大量的独特的车载接口。在车载LAN中,特别大范围普及使用的是CAN(控制器区域网络)。CAN的传输速度最大可达到1Mbps,它通过差分方式跟总线连接。CAN的总线上面可以连接多个节点,实现了1个对多的通信网的结构。由于CAN这种高可靠性的控
[汽车电子]
面向汽车市场CAN/Ethernet用<font color='red'>共模</font><font color='red'>扼流圈</font>的噪声对策事例
多路输入大功率LED智能驱动电路系统设计
智能LED驱动电路系统是基于风能和太阳能发电系统而改进设计的。其中,风电和光伏发电赋予了较高的优先级,在两种能源不足以供给照明时,再采用市电提供电源。由于受天气、时间、地域条件的改变,太阳能和风力资源有着不同的分布,为达到最大的风能光能利用率,采用了风光互补系统,并进行MPPT控制策略改进能源输入方案。单片机控制系统可对多路电源输入进行控制,按一定的优化方案执行对驱动电路供电。因为未采用单一能源的电力供应,为使风力发电和太阳能发电达到最大功率,MPPT控制策略扮演了重要角色。文中将综合太阳能电池板和风力发电机组的特点,分析它们的输出功率特性,以优化的风光电源对蓄电池的充电过程。在单片机智能控制系统的控制下,建立一个合理的解决方案,
[电源管理]
多路输入大功率LED智能<font color='red'>驱动电路</font>系统设计
基于PXA27x处理器的智能手机LCD驱动电路设计
液晶屏设计的好坏直接关系到智能手机的整体性能表现,然而液晶显示屏种类繁多,工程师需要针对各种显示屏的时序匹配、电源要求以及控制器的不同特点进行设计。本文介绍了PXA27x内部集成LCD控制器的特点、驱动实现方法以及相关的电源设计,并提出了电磁兼容设计建议。 全球智能手机市场正处于高速增长时期,市场研究公司Gartner预测,随着掌上电脑需求的下降,全球智能手机销售量2004年将增长到1400万部,增长率达140%,预期到2007年将大幅成长至4500万。面对日益成长的智能手机市场,各家芯片厂商都相继推出具有各自特色的芯片方案:如 Freescale公司的i.MX21处理器嵌入了多媒体加速技术,支持MPEG4和H.263;Int
[嵌入式]
优化LED驱动电路设计,轻松省去电解电容
针对现有LED驱动电路存在电解电容限制寿命的不足,提出了一种无电解电容的LED驱动电路的设计方法。该方法采用Panasonic松下MIP553内置PFC可调光LED驱动电路的芯片,与外部非隔离底边斩波电路合成作为基本的电路结构,输出稳定的电流用以满足LED工作的需要。同时设计保护电路来保护负载。实验结果表明,控制器芯片能稳定工作,并且可以实现27V的恒压输出和350mA的恒流输出。 LED(发光二极管)以其节能、环保、高亮度、长寿命等诸多优点成为新一代的绿色照明光源。随着LED照明技术的日渐成熟,它终将用于生活的各个方面,并成为照明光源的新宠。然而,高效率、低成本、高功率因数和长寿命的驱动电源是LED灯发光品质和整体性能的关键。
[电源管理]
优化LED<font color='red'>驱动电路</font>设计,轻松省去电解电容
技术探讨:LED照明驱动电路失效机理的典型分析
近几年从事 LED 制造、和研发的人员大大增加。LED企业亦如雨后春笋般成长。由于从事 LED驱动 研发的企业和人众多,其技术水平参差不齐,研发出来的LED驱动电路质量好坏不一。导致LED灯具的失效时常发生,阻碍了 LED照明 的时常推广。LED灯具失效一是来源于电源和驱动的失效,二是来源于LED器件本身的失效。本文试着从实际的LED电源驱动电路这一方面,分析其电路的工作原理,然后试着从在不同环境下的LED驱动电路下,分析各种工作敏感参数对失效的影响,来进行失效模式的分析,最后,通过仿真来验证结果。并从理论上给出失效的解决方案。    LED驱动电路原理   LED是一种半导体材料制造而成发光二极管,只能够单向导通,而且其导通电
[电源管理]
技术探讨:LED照明<font color='red'>驱动电路</font>失效机理的典型分析
应用设计文章---关于LED驱动电路设计简介
LED 驱动电路除了要满足安全要求外,另外的基本功能应有两个方面,一是尽可能保持恒流特性,尤其在电源电压发生±15%的变动时,仍应能保持输出电流在±10%的范围内变动。二是驱动电路应保持较低的自身功耗,这样才能使LED 的系统效率保持在较高水平。   传统的低效率电路:   图1 图1 是传统的低效率电路,电网电源通过降压变压器降压;桥式整流滤波后,通过电阻限流来使3 个LED 稳定工作,这种电路的致命缺点是:电阻R 的存在是必须的,R 上的有功损耗直接影响了系统的效率,当R 分压较小时,R 的压降占总输出电压的40%,输出电路在R 上的有功损耗已经占40%,再加上变压器损耗,系统效
[家用电子]
应用设计文章---关于LED<font color='red'>驱动电路</font>设计简介
小广播
最新电源管理文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved