我们会探讨在高频降压转换器使用最优版图并在1 MHz频率开关时可实现高于96%效率。
降压转换器纵然具备最优电路版图,如果没有把电源器件的反向传导降至最低,不必要的功率损耗仍然可以发生。这种体二极管的反向传导在上方器件与下方器件传导时的死区时间内出现,我们将阐释这个影响效率的原因及提供可简单地把损坏降至最低的方法。
死区时间所带来的影响
在降压转换器当上方及下方器件同时处于断开状态时(死区时间),能源将从输出电感器以反方向流过下方的氮化镓场效应晶体管。从图1降压转换器的典型开关波形图可以看到体二极管在死区时间的反向导通时段。在这个周期内,体二极管的正向压降将引致功率损耗,并以此程式代表:
其中ID是二极管电流、VF是体二极管正向压降及tD是每段开关时间TSW的二极管总传导时间(两侧)。当开关频率上升,死区时间的开关损耗的影响将更形重要,尤其是在大电流、低输出电压的应用中,因为更高损耗及更低输出功率级增大了死区时间内二极管传导损耗对效率的影响。
.
图1:降压转换器开关波形图展示死区时间的二极管传导
对于降压转换器来说,死区时间并不自然而然地相等于二极管的传导损耗。在开关节点的后缘,如果死区时间足够,负载电流将从开关节点自换向至接地,这将允许底部器件实现零电压开关(ZVS)而开启,从而减少开关损耗。自换向的速度要看负载电流及它对死区时间的影响(见图2)。长死区时间在小电流时将允许自换向,因此提高轻负载效率,但在重负载时将增加二极管传导及损耗。相反地,短死区时间将把满负载效率提升至最高点,但因轻负载具零电压开关损耗从而增加开关损耗。对于前缘来说,很少依赖负载电流,而把死区时间减至最短可把二极管传导降至最少。
图2:负载电流对下降缘二极管传导的影响与恒常死区时间比较。红圈部分代表场效应晶体管体二极管在传导时的区域
加入肖特基二极管
图3展示了一个工作在1 MHz频率、12 V转1.2 V的降压转换器,只要在每个死区时间距离增加5 ns(每周期的二极管总传导的10 ns),与优化后的死区时间相比(没有二极管传导),可以降低转换器效率超过一个百份点。在这低压下,加入一个肖特基二极管可有效地减低氮化镓场效应晶体管(eGaN FET)的二极管损耗。这是因为氮化镓场效应晶体管具备三个重要特性:
1。没有反向恢复损耗,就算部分电流换向至肖特基二极管也可减少有效的二极管压降及减少损耗。
2。氮化镓场效应晶体管的较高二极管正向电压使它的二极管电压与肖特基二极管的电压之间的差别更大,从而加快电流换向速度。
3。具备低封装电感而配以具低电感的肖特基二极管,将把电流换向环路电感降至最低,也加快电流换向的速度。
从图3测量出的效率可看到如果使用正确的尺寸,增加一个肖特基二极管可去除潜在的二极管传导损耗达70%。就算尺寸过小,电流仍然可以换向至肖特基二极管及提升效率。
图3:在降压转换器效率方面,1 A肖特基二极管对死区时间损耗的影响
(VIN=12 V, VOUT=1.2 V, Fs=1 MHz, L=150 nH, eGaN FET: T: EPC2015 SR: EPC2015, MOSFET: T: BSZ097N04LSG SR: BSZ040N04LSG).
把死区时间缩至最短
如果加入肖特基二极管可改善降压转换器的效率,把死区时间传导降至最少可更有效。最理想是采用自适应式死区时间方法来控制依赖负载电流的死区时间,但只可以在非常高频、低压应用中可实现这个要求速度及复杂度的方法。一般来说,比较简单的方法是在开关节点的上升缘及下降缘选择恒定的死区时间(如图2(b)所示)。这个简易方法提供与自适应方法一样的重负载效率,但在大约15%额定负载以下会降低效率。宜普公司的开发板配备简单的恒定死区时间电路,使用逻辑及RCD延时snubbers(如图4所示)。实现这个死区时间也无需高侧驱动器调节。
图4:基于氮化镓场效应晶体管、采用恒定死区时间的简单电路图
实验性研究结果
宜普公司为实现恒定死区时间控制及最优版图,构建了演示板EPC9107,给28 V转3.3 V降压转换器并工在1 MHz频率及具15 A最高输出电流。我们构建该转换器版图与功率模块差不多,在1/4 立方英寸的尺寸内包含全功率级。 图5展示开关节点波形图,并展示在28 V输出电压、只有10%的过冲时在一纳秒范围内的开关速度。前缘死区时间减至最短至差不多接近零时把约10 A负载的后缘死区时间也减至最短。这是把轻负载效率的影响减至1 A以下之同时在满负载时增加二极管传导时间约4纳秒。 图6展示这个降压转换器的效率,并与具相同规格、基于MOSFET器件的零电压开关功率模块进行比较。虽然零电压开关可提高效率及工作在2/3开关频率,基于MOSFET的转换器仍然比基于氮化镓场效应晶体管的硬开关降压转换器的效率低出1.5 %至3%。
图5:使用氮化镓场效应晶体管、28 V转3.3 V、15 A、工作于1 MHz频率的降压转换器的开关节点波形图
图6:基于氮化镓场效应晶体管的硬开关降压转换器与基于MOSFET器件软开关降压转换器的效率的比较
结论
本章讨论了死区时间对高频降压转换器的影响及如何缓和影响的方法。我们实现了一个简单的方法,使用恒定死区时间,工作在1 MHz频率的基于氮化镓场效应晶体管的降压转换器与基于MOSFET器件的软开关降压转换器相比,前者工作在接近相同的开关频率下可大大改善效率。
eGaN是宜普电源转换公司的注册商标。
上一篇:非接触感应供电技术及其在扭矩测试中的应用
下一篇:基于DSP的低压终端无功补偿装置的研究
推荐阅读最新更新时间:2023-10-12 22:34
Vishay线上图书馆
- 选型-汽车级表面贴装和通孔超快整流器
- 你知道吗?DC-LINK电容在高湿条件下具有高度稳定性
- microBUCK和microBRICK直流/直流稳压器解决方案
- SOP-4小型封装光伏MOSFET驱动器VOMDA1271
- 使用薄膜、大功率、背接触式电阻的优势
- SQJQ140E车规级N沟道40V MOSFET
- MathWorks 和 NXP 合作推出用于电池管理系统的 Model-Based Design Toolbox
- 意法半导体先进的电隔离栅极驱动器 STGAP3S为 IGBT 和 SiC MOSFET 提供灵活的保护功能
- 全新无隔膜固态锂电池技术问世:正负极距离小于0.000001米
- 东芝推出具有低导通电阻和高可靠性的适用于车载牵引逆变器的最新款1200 V SiC MOSFET
- 【“源”察秋毫系列】 下一代半导体氧化镓器件光电探测器应用与测试
- 采用自主设计封装,绝缘电阻显著提高!ROHM开发出更高电压xEV系统的SiC肖特基势垒二极管
- 艾迈斯欧司朗发布OSCONIQ® C 3030 LED:打造未来户外及体育场照明新标杆
- 氮化镓取代碳化硅?PI颠覆式1700V InnoMux2先来打个样
- 从隔离到三代半:一文看懂纳芯微的栅极驱动IC