开关电源电路中拓扑电感的Saber仿真辅助设计

最新更新时间:2014-02-20来源: 电源网关键字:开关电源  拓扑电感  Saber仿真 手机看文章 扫描二维码
随时随地手机看文章

一、(输入输出)滤波网络在电路中的地位

拓扑电感(变压器)是拓扑需要,滤波电感是纹波需要,只有当拓扑电感不足以满足纹波要求时,才使用滤波电感(增加LC滤波网络)。

这意味着:

1、如果拓扑电感满足纹波要求,可以不要滤波电路。

2、当拓扑电感不能满足纹波要求时,才另外单独考虑滤波电路。

3、拓扑电感的主要任务是应对拓扑需要的能量转移,而不是应对纹波的。

4、滤波电路的唯一任务就是滤波,不干别的。

二、滤波网络与拓扑的关系

所有电压型拓扑总可以这样表达:

其中,输入电容Cin、输出电容Cout都的拓扑允许的,甚至是拓扑必须的。

同时,Cin、Cout 也可以理解为拓扑本身的、自带的滤波电路 。

这里,虚线内的滤波网络现在是一个电容,也就是二端滤波网络,但是它也可以是三端甚至四端网络。

注意:图中没有任何电感,拓扑的电感(或者变压器)在拓扑模块内没有画出来。

三、输出滤波网络

对于大多数电压型拓扑而言,输出端总有一个电容Cout,而且这个电容就是滤波的意思。

一般情况下,我们总可以通过调整 Cout 的大小满足任何需要的纹波要求。

然而在某些情况下,我们无法通过调整 Cout 的大小获得需要的输出纹波,比如:

1、满足需要的纹波时,需要的 Cout 太大,成本和体积不允许。

2、在接近短路运行时(比如电焊机或者点焊机),普通电容的电流指标不能满足要求。

3、某些应用不允许太大的 Cout 存在,比如逆变系统,太大的 Cout 将导致控制的困难。

4、出于可靠性的考虑,在输出端不使用电解电容。

5、高精度电源,由于电容ESR的存在,始终达不到要求的输出纹波指标。

怎么办呢?

其实很简单:

1、找出能够接受的电容

2、把这个电容一分为二

3、中间放一个适当的电感

4、调整这个电感直到满足输出纹波的要求。

几点说明:

1、一般电源都是输出有功功率,即阻性负载,这时我们直接取 Co1 = Co2 滤波效果最好。

2、即使负载有部分感性成分,因为一般 Co2 都比较大,其容抗足以应付较大的感性负载冲击,一般不必考虑加大 Co2 。

3、容性负载(比如电解电源和充电电源)时,可考虑减小 Co2(即突出 Co1),大幅度减小也没有关系。

4、电焊电源可以(应该)取消 Co2。

5、谐振负载(比如超声波电源、感应加热电源)慎用此法。

6、滤波就是滤波,别和拓扑里面的电感搅在一起,只有这样才能达到最好的效果。

7、除特殊情况外,不建议使用两极或多级 LC 滤波,在总电容量和总用铜用磁量相当的情况下,单级滤波纹波效果最好,也不会产生驻波干扰。

四、设计举例(典型)输出滤波

将就上一贴的 50KHz、100W(120W)反激电源为例,当前纹波指标为30mV。

现在要求达到 2mV 的纹波精度。

方法一:加大输出滤波电容:

将现用滤波电容 C2 的 2200uF 增加 15 倍,即 33mF,输出纹波则对应降低 15倍(没考虑ESR),即等于 2mV。

如果觉得 33mF25V 的海量电解不好找,或者不合算,那么:

方法二:增加一级 LC 滤波:

当 Co1 = Co2 = 470uF 时,配合一个 5A 1.3uH 的电感,输出(与PWM同频的)纹波即可下降到 1.6mV 以下。或者:

当 Co1 = Co2 = 330uF 时,配合一个 5A 2.2uH 的电感,输出纹波即可下降到 2.0 mV 左右。

可见,即使增加一点点 LC 滤波。对输出纹波、成本、体积的改善都是非常显著的。

再来看这个滤波电感的工况:

电流的直流成分 5.0A,交流成分 0.1A 左右,大约只占 2%。

也就是说,这个电感基本上就是个直流偏电感,交流成分甚微。这意味着可以不必使用高级材料,也不考虑集肤效应,用普通铁粉芯磁环单股绕制即可。

下面是这个电感的设计参数:

小结

在输出端增加 LC 滤波网络是很简单的事情,只要将滤波电容一分为二、(随便)插入一个电感就能使(不插入电感等效于原电路)滤波效果显著提升,而且效果总是比单电容滤波效果好。因此:

1、工程师应该随时想到:“我那个滤波电容是不是应该分成二个,中间插个小工字?” 而且不用算,肯定比单电容好。

2、此法在同等情况下提高滤波效果,或者在同等滤波效果下降低成本、缩小体积,甚至缩小PCB面积。

3、既然不增加成本(甚至降低成本)就能够实现,因此在拓扑里面(的电感上或者控制模式上)去打主意减少纹波就是一件既费力又不讨好的事情,什么“某某拓扑、某某模式纹波大”的问题也不再应是问题。

关键字:开关电源  拓扑电感  Saber仿真 编辑:探路者 引用地址:开关电源电路中拓扑电感的Saber仿真辅助设计

上一篇:SIMPLIS电流模式反激电路仿真的经典实例献上
下一篇:供初学者参考的saber电源仿真工具之基础应用

推荐阅读最新更新时间:2023-10-12 22:35

开关电源中遇到的问题及相应解决办法集合
项目:IR1150 PFC 现象:高温测试的时候,MOSFET的壳温才80度,就炸机了。先前几台,MOS的壳温到达110度,都安然无事。 解决办法:弄出来查原因,是驱动电阻焊错了,本来10R,结果焊成100R。 分析:驱动电阻太大导致MOS损耗很大,同样的结到壳热阻,大的功耗会导致大的温差。虽然壳温才80度,但实际结温已经超过了MOS的承受范围。 驱动电阻大了,会造成驱动的功率严重不足,而将管子热死了! 如果驱动功率足够大的话,也不会炸机的。 如果PCB走线引起的电感足够大,将与MOS的GS端的电容Cgs谐振,会在驱动信号上线叠加尖峰,严重时会引起炸机,加电阻就是为了衰减这个振荡 项目:L4981 PFC 现象:空载上
[电源管理]
一种新型的改善多路输出电源交叉调整率的解决方案
多路输出 的 开关电源 因其体积小、性价比高广泛应用于小功率的各种复杂电子系统中。然而伴随着现代电子系统发展,其对多路输出电源的要求越来越高,如体积、效率、输出电压精度、负载能力(输出电流)、 交叉调整率 、纹波和噪声等。其中,交叉调整率是指当多路输出电源的一路负载电流变化时整个电源各路输出电压的变化率,是考核多路输出电源的重要性能指标。受 变压器 各个绕组间的漏感、绕组的电阻、电流回路寄生参数等影响,多路输出电源的交叉调整率一直以来是多路输出开关电源的设计重点。 目前改进交叉调整率的方法可分为无源和有源两类。有源的方法需要增加额外的线性稳压或开关稳压电路,虽然可以得到较高的交叉调整率,但却是以牺牲电源的效率、成本为代价的,
[电源管理]
一种新型的改善多路输出电源交叉调整率的解决方案
ADIADP1053三路数字电源控制方案
    ADI公司的ADP1053是三路数字电源控制器,基于电压模式PWM架构,能对三路单独输出提供控制,监视和保护,其它两路带反馈控制,另一路带固定占空比而未调整电压,三路的开关频率从50kHz到625kHz可单独编程,适用于隔离和非隔离的DC/DC转换器,AC/DC转换器.本文介绍了ADP1053主要特性, 功能方框图, 简化应用电路图以及两种典型应用电路图.     The ADP1053, based on a voltage mode PWM architecture, is a flexible, application dedicated digital controller designed for isolate
[电源管理]
ADIADP1053三路数字电源控制方案
一种长寿高效Boost超级电容掉电保持后备电源
    近年来,开关电源芯片被广泛应用于通信电子产品的电源供电系统。目前,关电源主要采用PWM控制电路,锯齿波振荡器是PWM控制电路 的核心功能部件。在电源电压、温度、工艺和环境负载变化或者漂移的条件下,要求振荡器能够产生频率稳定的信号输出。许多锯齿波振荡器虽然具有稳定性好、精度高的特点,但受环境温度和电源电压影响较大,基于以上要求,本文设计一种锯齿波产生电路。 1 电路结构及原理 1.1 电路整体框架及原理     图1为RC振荡器的原理图。本文提出的锯齿波振荡器主要由三部分构成,一部分是基准产生的电流I1和I2,一部分由电容C和开关K1、K2组成,最后一部分是控制电路。     该电路利用基准源产生的电流I1对电容C进行
[电源管理]
一种长寿高效Boost超级电容掉电保持后备电源
开关电源电路组成及原理详解
一、 开关 电源 的 电路 组成 开关电源的主要电路是由输入电磁干扰滤波器(EMI)、整流滤波电路、功率变换电路、PWM 控制 器电路、输出整流滤波电路组成。辅助电路有输入过欠压保护电路、输出过欠压保护电路、输出过流保护电路、输出短路保护电路等。 开关电源的电路组成方框图如下: 二、 输入电路的原理及常见电路 1、AC 输入整流滤波电路原理: ① 防雷电路:当有雷击,产生高压经电网导入电源时,由MOV1、MOV2、MOV3:F1、F2、F3、FDG1 组成的电路进行保护。当加在压敏 电阻 两端的电压超过其工作电压时,其阻值降低,使高压能量消耗在压敏 电阻 上,若电流过大,F1、F2、F
[电源管理]
浅谈绿色开关电源的设计要点
早期的开关电源由于技术不太成熟、器件性能的局限性,一些参数做得不太好像EMC难过关、待机功耗较大、效率不太高等。电磁兼容性EMC(Electro Magnetic Compatibility),是指设备或系统在其电磁环境中符合要求运行并不对其环境中的任何设备产生无法忍受的电磁干扰的能力。因此,EMC包括两个方面的要求:一方面是指设备在正常运行过程中对所在环境产生的电磁干扰不能超过一定的限值;另一方面是指器具对所在环境中存在的电磁干扰具有一定程度的抗扰度,即电磁敏感性。各种运行的电力设备之间以电磁传导、电磁感应和电磁辐射三种方式彼此关联并相互影响,在一定的条件下会对运行的设备和人员造成干扰、影响和危害。20世纪80年代兴起的电磁兼容
[电源管理]
浅谈绿色<font color='red'>开关电源</font>的设计要点
低噪声开关电源原理电路图
电路如图所示,该电路可以获得更大的输出功率,只需更改部分器件。图中左边的电路 R1,L1,D1,C1至C7是常规的共模滤波和整流电路,获取约300 V的直流电压供DC-DC变换电路使用;最右边电路L5,C11等是普通的LC滤波电路;IC2,D8,R9,R10组成电压反馈电路,形成闭环结构,稳定电源输出电压;中间部分是DC-DC变换器,降噪声的关键是对这一部分的电路进行适当处理。  
[电源管理]
低噪声<font color='red'>开关电源</font>原理电路图
基于DSP和CPLD的移相全桥软开关电源数字控制器
1 引言 近年来,随着大功率开关电源的发展,对控制器的要求越来越高,开关电源的数字化和智能化也将成为未来的发展方向。目前,我国的大功率开关电源多采用传统的模拟控制方式,电路复杂,可靠性差。因此,采用集成度高、集成功能强大的数字控制器设计开关电源控制器,来适应不断提高的开关电源输出可编程控制、数据通讯、智能化控制等要求。 2. 数字控制器设计 图1 控制器系统结构 本文设计的数字控制器,采用TI公司24X系列DSP控制器中的TMS320LF2407A芯片作为主控制器,主要功能模块包括:(1)DSP与可编程逻辑器件CPLD相配合实现全桥移相谐振软开关驱动(2)偏磁检测电路;(3)其他功能,如数据
[应用]
小广播
最新电源管理文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved