推荐阅读最新更新时间:2023-10-12 22:37
直流低压稳压电源电子线路设计原理图
直流低压稳压电源原理图分析: 开关电源部分的VD1-VD4、R1、C1、C2组成整流滤波电路。NE555和R2、R3、C4、VD6等元件组成多谐振荡电路,其频率约20KHz。R4、C3、VD5组成降压稳压电路,为NE555提供12V工作电源。大功率管VT1及变压器T构成开关电路。VT1的工作状态由NE555的③脚控制,导通时间由脉冲宽度决定,调整R3即可改变脉冲宽度。脉冲宽度变宽,输出电压升高;脉冲宽度变窄,输出电压降低。VT2及R8、R9、C6组成过流保护电路。当负载过重或发生短路故障时,VT2导通,强迫NE555复位停振,从而保护VT1不致损坏。C7、R10为保护网络,防止VT1的c-e结被瞬间脉冲击穿。两个次级绕组经
[电源管理]
电源测量小贴士(连载二): 低压DC电路开机测试
使用 吉时利DMM751 0检查电压和纹波,确保满足规范。
原型制作是设计中比较激动人心的步骤之一。在这个阶段,在理想情况下,您已经看到设计愿景就要变成现实,如果一切能够照计划进行的话。可能会出现很多问题,如电路板布线、焊点、元器件贴装和寄生电容等,因此在测试原型电源时,最好要审慎。
这是一种常见作法,但仍需指出的是,应使用数字万用表检查所有输入和输出阶段是否有短路。同样,还要检查电路板上所有关键功率点,确保电路不会非故意短路。应尽可能把低压模拟电路和数字电路隔离成多个子电路,这在发生问题时有助于调试问题及控制损失。
电路板很可能至少有一个辅助电源。下一步是隔离
[测试测量]
智能化低压大电流开关电源的研制
1 引 言 随着现代电力电子器件的飞速发展,高频开关电源以其效率高、体积小的优点,应用越来越广泛。该论文介绍了开关电源研制的全过程。系统主电路包括单相输入整流、半桥逆变、高频交流输出、输出整流几部分。控制电路部分包括主电路开关管控制脉冲的产生和单片机智能化控制两个部分。单片机智能化控制系统包括模数转换、数据处理、液晶显示、微型打印机、串行通讯、时钟芯片等几部分。单片机控制系统实现的液晶显示、微型打印机的各种打印功能使得整个系统的工作更加直观、方便。 系统的整体设计结构: 2 主电路设计 开关电源的拓扑结构很多,考虑到我们要做的电源功率不是很大,且考虑成本问题,选用主电路拓扑结构为半桥式逆变电路。而且,由于电容的
[电源管理]
低压电源的设计
电源模块对于一个控制系统来说极其重要,关系到整个系统是否能够正常工作,因此在设计控制系统时应选好合适的电源。今天在此就介绍一个低压电源的设计。 电源电路选择的电源芯片合适很重要,稳压芯片:LM2576S,功率大,可以承受高电压,保护芯片,使用它来为系统的传感器相关电路供电;TPS7350是一款低压差稳压芯片,采用7350为单片机等逻辑控制电路提供+5V电压,舵机的供电电源也是采用7350来实现,使用两个二极管将7350的低端电位升高1.4V左右,从而使7350输出稳定的6V电压(根据自己电路的要求规定低端电压的值)。这样稳压效果较好,性能稳定,电路结构简单,带载能力强,对其它模块供电还是能保证充足的电源。系统控制和驱动、
[电源管理]
低压隔离式电源输出电压调节方案
TL431并联稳压器或许是隔离式 开关电源 中最常见的IC,其可提供低成本的简单方式精确调节输出电压。图1是TL431及典型应用电路(用于调节隔离式电源输出)的方框图。TL431在单个三端器件中整合一个内部参考和一个放大器。R3和R5电阻分压器以及TL431的内部参考电压可设定输出电压。在TL431内部,误差放大器输出可驱动晶体管的基极。晶体管集电器不仅可连接TL431的K(阴极)引脚,而且还可驱动一个光耦合器,其可将隔离边界的误差信号发送至主控制器。反馈环路的频率响应由位于TL431阴极与REF引脚之间的补偿组件形成。 图1.常用于调节隔离式电源输出电压的TL431电路。 在转换器输出电压小于5V时,该电路开始出现一些
[电源管理]
低压差线性稳压器在开关电源中解决方案
电源是各种电子设备必不可缺少的组成部分,其性能的优劣直接关系到电子设备的技术指标及能否安全可靠地工作。目前常用的直流稳压电源分线性电源和开关电源两大类,由于开关电源内部关键元器件工作在高频开关状态,本身消耗的能量很低,开关电源效率可达80%~90%,比普通线性稳压电源提高近一倍,目前已成为稳压电源的主流产品。 开关稳压电源的结构 开关稳压电源的原理图及等效原理框图,它是由全波整流器,开关管Vi,激励信号,续流二极管VD,储能电感和滤波电容C组成。实际上,开关稳压电源的核心部分是一个直流变压器。这里我们对直流变换器和逆变器作如下解释。逆变器,它是把直流转变为交流的装置。逆变器通常被广泛地应用在采用电平或电池组成的备用电源中。直流变换
[电源管理]
超低压转换器推动热电源能量收集的发展
背景 用于测量和控制用途的超低功率无线传感器节点在大量增加,这种情况与新的能量收集技术相结合,已经使得有可能产生完全自主运行的系统,即由周围环境中的能源而不是电池供电的系统。用周围环境中的能源或“免费”能源给无线传感器节点供电这种方法很有吸引力,因为这种方法可以对电池电源起到补充作用,或者完全不再需要电池或导线。当更换电池或电池维护不方便、昂贵或危险时,这种方法具有显然的优势。 完全不用导线还使得很容易大规模扩展监视和控制系统。能量收集无线传感器系统在多种多样的领域简化了安装和维护,例如楼宇自动化、无线 / 自动计量和预测性维护、以及其他无数的工业、军事、汽车和消费类应用。能量收集的好处很明显,但是有效的能量收
[电源管理]
低压隔离式电源输出电压调节方案
TL431并联稳压器或许是隔离式开关电源中最常见的IC,其可提供低成本的简单方式精确调节输出电压。图1是TL431及典型应用电路(用于调节隔离式电源输出)的方框图。TL431在单个三端器件中整合一个内部参考和一个放大器。R3和R5电阻分压器以及TL431的内部参考电压可设定输出电压。在TL431内部,误差放大器输出可驱动晶体管的基极。晶体管集电器不仅可连接TL431的K(阴极)引脚,而且还可驱动一个 光耦 合器,其可将隔离边界的误差信号发送至主控制器。反馈环路的频率响应由位于TL431阴极与REF引脚之间的补偿组件形成。 图1.常用于调节隔离式电源输出电压的TL431电路。 在转换器输出电压小于5V时,该电路开始
[电源管理]