基于功耗限制的CMOS低曝声放大器最优化设计

最新更新时间:2014-04-30来源: 互联网关键字:CMOS  低曝声  放大器 手机看文章 扫描二维码
随时随地手机看文章

 在无线射频接收机中,射频信号要经过诸如滤波器、低噪声放大器及中频放大器等单元模块进行传输。由于每个单元都有固有噪声,从而造成输出信噪比变差。采用多级级联的系统,前面几级的噪声系数对系统影响最大。为了降低整个系统的噪声系数,必须降低第一、二级的噪声系数并适当提高它们的功率增益,以降低后面各级的噪声对系统的影响[1]。低噪声放大器LNA(L0W-Noise Amplifier)作为无线射频接收机最前端的关键部件,要求:(1)噪声最小,同时又要求具有一定的增益。(2)要求它有足够大的线性范围。(3)要求它与输入和输出端口有良好的匹配,以达到最大功率传输或者最小噪声系数,而这两者又很难同时达到,需要选择一个折衷方案。(4)要求它应具有一定的选频功能,以抑制带外和镜像频率的干扰。基于低噪声放大器的上述四方面要求,本文从功耗限制下的噪声最优化、阻抗匹配及小信号增益方面出发,详细讨论低噪声放大器的设计方法,并采用0.25μmCMOS工艺设计一种工作在2.4GHz频率下、可应用于蓝牙系统收发器的全集成的低噪声放大器。

1 电路分析与设计

  采用电感源极负反馈、单端输入的基本电路形式[2-3]实现的低噪声放大器(LNA)如图1所示。图中,M1、M2和LS组成电感负反馈共源共栅casocode放大电路,以获得高隔离度、低噪声系数和良好的输入阻抗匹配。在输入回路中,Lg1、Lg2与M1的Cgs1及Ls。谐振在2.4GHz,并与输入端50=Ω阻抗相匹配,Cb1为输入端的隔直电容。在输出回路中,Lt与M2漏极的等效电容谐振在2.4GHz。M3、Rref和Rbias组成偏置电路,调节Rref的大小可控制电路直流工作点和静态功耗。M1栅极的偏置电压主要由Rref和M3决定,而Rbias可以进行微调。
 

1.1 功耗限制下的噪声最优化

  主放大管M1对电路的噪声贡献最大,主要表现为沟道热噪声和栅感应噪声。根据噪声理论[4-5],沟道宽度W和静态电流越大,噪声越小,但实际的设计必须考虑功耗的限制,不可能用增大功耗的办法来减小噪声。本设计的功耗要求小于15mW。下面以此为约束条件推导出如何选择M1的尺寸以获得最优噪声。

系统噪声系数的近似表达式为:

  式中,γ、δ分别为MOS管沟道热噪声系数和感应栅噪声系数,c为这两种噪声之间的相关系数(它们的取值由工艺决定),ω0是谐振频率,υsat、εsat分别表示电子的饱和速度及速度饱和时的电场强度,Rs为50Ω信号源阻抗,PD为电路功耗,Po为输出功率,Vdd为电源电压,Vod为输出电压的大小。

  由Charter公司0.25μmCMOS RF。工艺可以确定M1可取的最小沟道长度L≌0.241μm,电子饱和速度υsat=76090m/s,电子的有效迁移率μeff=0.03932m2/(υs),速度饱和电场强度为

 


  噪声系数F与M1尺寸选取有着以下密切关系:



式中,QL为输人谐振同路的品质因子,Cgs为MOS管栅源之间的电容,Cpx为MOS管栅氧化层电容密度。由公式(3)、(4)、(5)、(6)、(7)可得:

  对于每一个功耗值,都对应一个最佳的Ql,opt值,使该功耗下的噪声系数,最小。应用Matlab数学软件分析得到在15mW的功耗限制下取得最小噪声时的QL,opt为9.2。代人下式可汁算出M1的沟道宽度为:

本设计中M2的沟道宽度和长度同M1一致,也取为Wm2≌160μm,L≌0.24μm。

1.2 阻抗匹配[6]

低噪声放大器的输入阻抗可写为:
 

  MOS管的沟道宽度和长度确定后,可以对放人器进行直流静态工作点分析,确定M1管的直流参数:gml=4.93×10-2A/V,cgsl=2.30×10-13F,Cgdl=O.71×10-13F。根据(11)和(12)式可计算出:Lt≈0.275nH,Lg1+Lg2≈18.86nH。在后面的电路仿真中,对器件参数做了微调,最终取Ls=0.43nH,Lg1=Lg2=8.89nH,这与理论计算非常接近。Lt与M2漏极的等效电容谐振在2.4GHz下,M2漏极的等效电容可由直流静态工作点仿真分析得到:Cdd2=0.76x10-13F,从而可算出Lt≈6nH。为了与50Ω的输出负载电阻匹配,由输出阻抗的Smith圆图可确定cb2=o.7pF,CL=O.6pF。

1.3 电压增益

  LNA的电压增益主要由输入级的总跨导和输出端的负载决定[7-8]。图2所示的是LNA基本电路的小信号等效电路(这里忽略了,沟道调制效应的影响)。其中兄RS为信号源内阻,Rl=ωTLs是LNA输入阻抗的实部,R2≈Q′Lω0Lt是输出阻抗的实部,Q′L为电感Lt的品质因子,ωT是M1的截止频率。当输入、输出回路谐振在工作频率ωo时,由图2可得到输入回路的总跨导为:
 

M1的小信号电流glmlVin一部分流过M2,另一部分流过M1漏极的等效电容Cl(C1=Cdb1+Csb2)。流过M2的电流为:


当输出端电感Lt与M2的漏极总电容C2谐振在工作频率时,则电压增益为:
 

  因此,增大晶体管的跨导和电感的Q′L值能有效地提高增益。另外,源极负反馈电感Ls的取值对增益也有影响。一般可以采用增大静态电流和晶体管尺寸的方法增大跨导,但应考虑电路功耗的限制。本文设计的LNA采用的电感均为CMOS工艺的片内螺旋电感,Q′L值都不高,所以应选用Q′L值高的螺旋电感以提高增益。

2 模拟结果

  电路中所有元件取自Chater公司0.25μmCMOS RF工艺库,并全部集成在芯片内部。使用Cadence的Spec-tre进行了模拟分析。LNA的S参数如图3所示,由图可知,模拟显示该放大器的功耗为16mW,正向增益S21在2.4GHz频率时最大值为15dB,反射系数S11小于-23dB,S22小于-20dB。由此说明低噪声放大器实现了与输入、输出端口的良好匹配,并能取得较大的增益。噪声系数的频率响应如图4所示,NF在2.4GHz处取得最小值2.7dB。对线性度进行了模拟,LNA的1dB压缩点如图5所示,1dB压缩点为-10.5dBm。表1列出了低噪声放大器的模拟结果。
 

  本文详细介绍了功耗限制条件下噪声最优化的低噪声放大器的设计方法,并采用0.251μmCMOS RF工艺设计了一种2.4GHz低噪声放大器。模拟结果表明,采用2.5V电源时,功耗为16mW,在2.4GHz工作频率下,正向增益S21可达15dB,反射参数S11小于-23dB,S22小于-20dB,噪声系数NF为2.7dB。

关键字:CMOS  低曝声  放大器 编辑:探路者 引用地址:基于功耗限制的CMOS低曝声放大器最优化设计

上一篇:射频低噪声放大器电路的结构设计
下一篇:利用AMETEK MX/RS可再生交直流电源测试逆变器

推荐阅读最新更新时间:2023-10-12 22:39

提高单片机系统可靠性的设计方法
  目前,大量的嵌入式系统均采用了单片机,并且这样的应用正在更进一步扩展;但是多年以来人们一直为单片机系统的可靠性问题所困惑。在一些要求高可靠性的控制系统中,这往往成为限制其应用的主要原因。 1 单片机系统的失效分析   一个单片机系统的可靠性是其自身软硬件与其所处工作环境综合作用的结果,因此系统的可靠性也应从这两个方面去分析与设计。对于系统自身而言,能不能在保证系统各项功能实现的同时,对系统自身运行过程中出现的各种干扰信号及直接来自于系统外部的干扰信号进行有效的抑制,是决定系统可靠性的关键。有缺陷的系统往往只从逻辑上去保证系统功能的实现,而对于系统运行过程中可能出现的潜在的问题考虑欠缺,采取的措施不足,在干扰信号真正袭来的时候
[应用]
D类放大器的多级EMI消减技术
多年来,消费类音频工程师一直想使用省电的数字D类放大器来取代耗电的模拟A/B类放大器。但到目前为止,两个问题阻碍了 D类放大器 的应用:传统D类放大器方案中固有的高频开关产生的 EMI 高辐射,以及为满足EMI规范而添加过滤和屏蔽措施所带来的高成本。日前,高性能模拟与混合信号IC厂商Silicon laboratories 就针对上述应用瓶颈推出了据称是“业界首颗能有效消减EMI的5瓦特立体声D类放大器”产品--Si270x。   目前,除了多个音频放大器细分市场快速增长外,另一个引人注目的趋势则是由A/B类放大器快速转向D类放大器 。来自Databeans的数据显示,2010年D类放大器市场预计将达到3.47亿美元,今
[模拟电子]
D类<font color='red'>放大器</font>的多级EMI消减技术
高性能模拟前端中的运算放大器设计
  高速转换系统,尤其是电信领域的转换系统,允许模数转换器(ADC)输入信号为AC耦合信号(通过利用变压器、电容器或两者的组合)。但对于测试和测量行业而言,前端设计并非如此简单,这是因为除提供AC耦合能力之外,该应用领域通常要求输入信号与DC耦合。设计可提供良好脉冲响应和低失真性能(≥500MHz的DC频率)的有源前端充满挑战。本文就适用于高速数据采集的高性能ADC使用的模拟前端提供几种设计思想和建议。 图1:LMH6703频响。   使用差分放大器是将高频模拟信号与ADC的输入相连的首选方法。因此,需要选择的第一个器件就是差分输出运算放大器。选择这类器件时,主要有两个考虑因素:增益带宽积和
[模拟电子]
高性能模拟前端中的运算<font color='red'>放大器</font>设计
光耦合简易隔离放大器
光耦合简易隔离放大器 电路的功能 在不必使用高精度隔离放大器的情况下,线性、温度特性略差些也能满足要求,这时完全可以采用象本电路那样的简易隔离放大器。这种放大器频宽为DC~30KHZ,但因直流稳定度不好,所以多采用AC耦合。 电路工作原理 由于LED及光电晶体管的光耦合输出、输入特性不好,所以把直流偏置调节到线性范围的中部,可变电阻VR1用来确定偏置,调节该电阻直到输出级波形失真最小为止。DC偏置和输入信号叠加,控制光二极管的正向电流,应使OP放大器A1以恒流方式驱动发光二极管。在光电晶体管的输出端,由R5将射极电流转换成电压。
[模拟电子]
光耦合简易隔离<font color='red'>放大器</font>
CMOS技术实现的微型化毫米波传感器
大多数商用雷达系统,特别是高级驾驶员辅助系统 (ADAS) 中的雷达系统,均基于锗硅(SiGe)技术。目前的高端车辆都有一个多芯片SiGe雷达系统。虽然基于SiGe技术的77GHz汽车雷达系统满足自适应巡航控制时的高速度要求,但它们体积过大、过于笨重,占用了大量电路板空间。 随着车辆中雷达传感器数量的不断攀升,目前车辆中至少有10个雷达传感器(前置、后置和车角),空间上的限制就要求每个传感器必须体积更小、功耗更低,并且性价比更高。某些正处于开发阶段的现有雷达系统将促使发射器、接收器、时钟和基带功能集成在一个单芯片内,而这将把前端芯片的数量从4个减少到1个,不过这只适用于雷达前端。 通过充分利用互补金属氧化物半导体(CMOS
[物联网]
以<font color='red'>CMOS</font>技术实现的微型化毫米波传感器
MAX97220 DirectDrive线路驱动器/耳机放大器
 MAX97220是一个差分输入的DirectDrive ®线路驱动器/耳机放大器。这个装置是为1kΩ的驾驶与5V电源供电,为600Ω负载2VRMS的电压为3.3V与3VRMS线的水平荷载的能力。一个耳机负载32Ω被赶进与125MW机组在5V供电的能力。该集成电路采用具有内部固定6dB增益或通过外部电阻外部设定增益。外部增益设置节点,也可以用于配置机顶盒的应用程序过滤器。该IC具有完整的音频带宽在特殊的THD + N。   该集成电路的两个版本,可与不同的导通时间(吨)。为耳机应用A和C版本特色的5.5ms吨,而B和D版本,为机上盒应用目的,配备了130ms吨。片上电荷泵反转电源输入,建立一个负电源轨。放大器的输出级的电源供应之
[模拟电子]
英飞凌推出针对GPS应用的高灵敏低噪放大器
2008 年 7 月 30 日 ,英飞凌科技股份公司近日在日本无线通讯展 Expo Comm Wireless Japan 上宣布,该公司的广博产品组合又添新成员:针对 GPS 应用并具有最佳噪声系数的高灵敏度低噪放大器 BGA 715L 7 。 这款新产品满足了手机对高灵敏度和无线信号抗扰性的设计要求。它的功耗仅为 5.94mW ,并能在 1.8V 的电压下进行操作,大大延长了电池的使用时间。而 GPS 功能将有望成为下一代手机的标配功能。市场调查机构 IMS Re-search 的分析报告显示,手机 GPS 市场在 2011
[电源管理]
英飞凌推出针对GPS应用的高灵敏低噪<font color='red'>放大器</font>
一种新的用于射频功率放大器的预失真器
在各种射频功率放大器线性化技术中,前馈技术有很高的线性度和带宽,但是其电路结构复杂,成本昂贵,而且效率低,他主要用于大功率放大器中,在直放站中,预失真技术就有一定优势,他的成本低,功耗小、电路结构简单。在机失真RF功率放大器中,放大器性能的好坏主要取决于预失真器的特性。好的预失真器可以大大提高功率放大器的线性度,更好地抑制频谱再生。本文研究了一种能够分别产生IM3和IM5的预失真器,他能很好地改善3阶和5阶交调分量。 1 预失真器的电路结构 基本的谐波发生器电路如图1所示。 这个谐波发生器由2个具有相同特性的肖特基二极管(本文采用Skyworks公司的SMS3922)、电容、电阻和
[模拟电子]
小广播
最新电源管理文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved