一种超低功耗的空间定向测试仪的设计

最新更新时间:2014-04-30来源: 互联网关键字:超低功耗  空间定向  测试仪设计 手机看文章 扫描二维码
随时随地手机看文章

空间定向测试仪是一种应用非常广泛的电子测量仪器,尤其是伴随着微电子技术的发展,空间定向测试仪在车辆、舰船、飞行器等导航领域中的应用日趋成熟。本文所研究的空间定向测试技术主要是以MSP430 单片机为基础的。因为MSP430 系列单片机是一种16 位超低功耗、具有精简指令集(RISC)的混合信号处理器,它能针对实际应用需求,将多个不同功能的模拟电路、数字电路模块和微处理器集成在一个芯片上。因此,笔者研究了如何用MSP430 单片机控制各模块的接口电路,并且能够很好地应用于实际测量当中。

1 空间定向测试各硬件接口的设计

本文主要研究的是基于MSP430 单片机的空间定向测试仪,该仪器的工作原理是将方位信息接收器接收到的数据传输给MSP430 单片机的可读存储器中,然后在经过输出端显示到液晶屏上。在这一过程中,我们需要设计一个硬件接口电路,连接信息接收器和液晶显示器,而MSP430 单片机的读写控制则需要通过语言编程来完成。

基于MSP430 单片机的空间定向测试仪设计的基本思想是利用MSP430 单片机操控方便、接口简单、体积小、低能耗以及低成本等优点,将其作为嵌入式系统以便扩展空间定向测试仪的功能。由于空间定向测试仪的信息接收模块接口电路较少,但是应用范围非常广泛,因此需要设计多接口电路联接显示器、单片机等。此外,为了提高空间定向测试仪的数据处理和应用能力,需要实现PC 机与空间定向测试仪的串行通信。实现良好的人机对话,操作简单以及友好界面,有人性化的输入能力和显示能力。因此,其硬件接口模块设计如图1 所示。

 

 

图1 硬件接口模块

MSP430 单片机是空间定向测试仪的核心部位,它不仅可以对整个仪器的内部软件模块进行协调处理,而且还能够对收集到的各种数据信息进行分类整理,计算出相应的数值。加速传感器主要使用的是ADXL203,ADXL203 是完整的高精度、低功耗、单轴/ 双轴加速度计,提供经过信号调理的电压输出,所有功能均集成于一个单芯片IC 中。这些器件的满量程加速度测量范围为±1.7 g,既可以测量动态加速度,也可以测量静态加速度。基于MSP430 单片机的空间定向测试仪的整个信号电路是对传感器的输出信号进行放大和滤波,电路的晶振频率是411.0592MHz,波特率是4800,此时设波特率的初始值为FFFAH.标定数据库主要是由AT24C16 存储器构成,其低压和标准电压为Vcc=1.8V-5.5V,拥有2048×8(4k)的存储空间,2 线串行总线,斯密特触发,噪声抑制滤波输入。Bi 方向传输协议,100kHz(1.8V,2.5V,2.7V)和400kHz(5V)兼容传输速率。硬件数据写保护引脚,8 位页写模式,允许局部页写操作,器件内部写周期最大10ms,高可靠性,1 万次的写周期,100 年的保存时间。在LCD 显示屏方面主要根据LCD 的串/ 并行数据接收模式,如果是低电平采用的是串行模式,如果是高电平则采用并行模式,此外,液晶显示屏设计为中心对称可以正反显示,方便读取数值。键盘部分采用的则是16 键盘,4×4 阵列,从PB 口低4 位引出列线,PC 低四位引出行线,然后通过电阻接+5V 电压。键盘的电源键负责开关机的控制,显示模式选择键则是控制测试仪的空间定向信息,测量方式选择键用于不同情况下方位测量的相互切换。保持按键则是将测量结果保持在显示器上方面读取。为了降低空间定向测试仪的功耗,MSP430 单片机可以根据实际情况增加高电平,发出键盘扫描信号,其他情况则可以采用能耗较低的低电平。

基于MSP430 单片机的空间定向测试仪的串行输入口和串行输出口分别与MSP430 单片机相连,主要负责接收方位信息接收器传输的各种信息。基于MSP430 单片机的空间定向测试仪供电电压范围是1.8 ~ 3.0V,该测试仪的硬件平台需要使用三种电压,内核的工作电压为1.8V,存储器和外部I/O 设备的工作电压为3.3V,系统平台的工作电压则为4.2V.该仪器所使用的是宽电平输出,通过转换器进行多电平输出,并且可以通过LM317 稳压器得到稳定电压。此外,复位电路的设计也是相当重要的一个环节,复位电路主要完成测试仪的上电复位和测试仪在运行过程中用户的按键复位功能。复位电路主要由简单的RC 复位电路组成,拥有可靠的逻辑复位功能。为了保证测试仪能够有效复位,需要选择合适的参数,调整复位状态的时间。对于S3C2410X,在测试仪上电后nRESET 端必须保持低电平至少有4 个MCLK 周期,两级非门电路用于按钮去抖动和波形整形;nRESET 端的输出状态与Reset 端相反,用于高电平复位。

2 空间定向测试各接口的软件设计

基于MSP430 单片机的空间定向测试仪的软件工作平台主要有内嵌式编辑器、编译器、汇编器、连接器、调试器以及函数库管理器。基于MSP430 单片机的空间定向测试仪的编程主要可以分为方位信息接收器数据输入的传统通信程序设计、LCD 数据显示输出的程序设计、下位机串口通信模块程序三大部分。

2.1 接收方位信息流程设计

接收方位信息的流程如下图2 所示。首先需要设置一个串口中断,串行控制寄存器RI 表示接收中断的标志位,当RI=1 时,说明空间定向测试仪接收到数据。然后将RI 至零,判断下一组数据的信息状态。将路径字母输入缓冲区中,判断该语句是否为A(电流数据),如果判断为A 就将所需要的语句输出到LCD 显示屏上,如果为V(电压数据),则不进行显示。

 

 

 

2.2 液晶显示流程设计

MSP430 单片机通过中断接收主通信控制器发来的数据,并将接收到的数据送给LCD 显示。通信参数设置为波特率为1200bps,8 个数据位,CRC 校验。对接收到的数据汉字采用16*16 的点阵、字母和数字母采用8*16 的点阵显示。由于需要显示的汉字、字母和数字是固定的,所以采用直接固化显示字模到FLASH 中的方法。这种方法占用空间少,程序实现简单,显示速度快,适合字模数据库不大的情况。液晶显示程序流程如图4 所示。

 

 

2.3 下位机串口通信流程设计

首先调用初始化函数进行系统初始化,串口通信结构图如图5 所示。初始化完毕后,程序进入主循环。每次循环时,程序首先调用DoUart 处理串行通信接收缓冲区中的数据。处理完毕后,如果有需要发送给PC 机的数据,就调用SendUart 函数发送数据。如果串行通信模块收到数据,则CPU 退出低功耗模式,而进入串行接收中断程序。退出中断程序后,CPU 不再进入低功耗模式,并执行跳转语句,进行下一轮循环,再次调用DoUart 和SendUart 函数。若没收到数据,则CPU 会一直处于低功耗模式。

 

 

3 调试

IAR C-SPY 高级调试器与IAR Embedded Workbench的工作环节能够很好的匹配在一起,可以形成一个拥有较强功能的高级语言交互调试器,可以对汇编语言或者C 语言进修调试。能够设置断点,进修单步运行,并且支持如Stepin,Step over 等多种单步运行方式,可以观察寄存器以及内存的数值,查看变量。

在这里,笔者使用硬件仿真调试Flash EmulationTool 模式。主要通过JTAG 接口与MSP430 单片机的硬件系统相连接,然后下载程序。MSP430 单片机接外围电路并且模拟硬件系统的真实环境进行调试,验证应用程序是否有错误,同时检验目标系统的硬件设计是否足够完善。

4 结束语

综上所述,单片机是将计算机、微电子以及现代通讯融合在一起的高新技术,在工业控制以及测量领域的应用非常广泛。本文研究的MSP430 单片机的主要特点是可靠性高、操作简单、维护方便。基于MSP430 单片机的空间定向测试仪有超低的功耗,而且在降低芯片的电源电压和灵活而可控的运行时钟方面都有其独到之处。因此在车辆、舰船、飞行器等导航领域中有着非常广泛的发展和应用前景。本文主要介绍了基于MSP430 单片机的空间定向测试仪的结构设计,对其硬件结构设计以及软件结构设计进行了细致的分析研究,从而能够满足实际应用对基于MSP430 单片机的空间定向测试仪在性能以及可靠性方面的需求,为基于MSP430 单片机的空间定向测试仪未来的发展提供更加广阔的空间。

关键字:超低功耗  空间定向  测试仪设计 编辑:探路者 引用地址:一种超低功耗的空间定向测试仪的设计

上一篇:基于无弧有载调压实现无弧切换的解决方案
下一篇:一款600W正弦波逆变器设计制作的全流程(一)

推荐阅读最新更新时间:2023-10-12 22:39

纳芯微推出超低功耗TMR开关/锁存器 NSM105x系列
2023年10月9日,上海 —— 纳芯微宣布推出基于隧道磁阻 (TMR) 的超低功耗磁开关/锁存器NSM105x系列,为数字位置检测提供高精度的解决方案,可被广泛应用于工业与消费领域的位置检测。 纳芯微全新TMR开关/锁存器芯片NSM105x系列 NSM105x产品系列包含了3个产品型号,即NSM1051(单极开关)、NSM1052(全极开关)、NSM1053(锁存器)。通过为用户提供不同的可选开关点、工作磁极、输出相位、采样频率、输出接口、封装形式等关键特性,NSM105x系列可以全面覆盖各个应用场景下的不同系统需求。NSM105x系列采用了TO92S与SOT23-3两种行业通用封装,兼容市面主流竞品,支持穿孔
[焦点新闻]
纳芯微推出<font color='red'>超低</font><font color='red'>功耗</font>TMR开关/锁存器 NSM105x系列
矽典微百毫瓦级超低功耗毫米波传感器SoC问市
2020年7月28日,矽典微首次发布拥有4x4mm超小面积、百毫瓦级超低功耗的AIoT毫米波传感器SoC系列。融合高集成度和智能算法模块,赋能客户缩短研发周期,快速实现产品推向市场化。毫米波雷达以其天然的性能优势和特点,从原来应用于大型船舶和车辆设备,向小型化的物联网应用设备转型。越来越多的领域可以看到毫米波传感器的身影。 极具性价比和快速适配多样性智能设备的优点,让全自主研发的矽典微毫米波传感器SoC,携手AIoT新赛道的客户共创新浪潮。 本次发布的三款AIoT毫米波传感器SoC可以覆盖从感应类轻小应用到阵列类复杂体系应用,是用于智能家居家电、机器人、无人机、物联网、新基建等智能领域的创新型器件。芯片内部集成了完整
[嵌入式]
矽典微百毫瓦级<font color='red'>超低</font><font color='red'>功耗</font>毫米波传感器SoC问市
国半推出六款超低功耗数模转换器,应用于便携式产品
美国国家半导体公司(National Semiconductor Corporation)日前宣布推出六款全新的8、10及12位超低功率双通道及4通道数字/模拟转换器。新产品的推出使该公司的数字/模拟转换器系列有更多不同的型号可供选择。这几款数字/模拟转换器均提供3mm x 3mm的小型LLP及MSOP两种不同封装。 以上各款数字/模拟转换器的功耗都极低,若在2.7V至5.5V的供电电压范围内操作,稳定时间介于3us至6us(典型值)之间。以DAC122S085为例,这款12位双通道数字/模拟转换器若以3.6V的电压正常操作,其功耗最高也不会超过1.5mW,关机模式的功耗甚至低于0.2uW(典型值)。由于这几款数字/模拟转换
[新品]
一种基于MSP430的超低功耗电子温度计的设计
  本文设计的超低功耗电子温度计能够通过温度传感器测量和显示被测量点的温度,并可进行扩展控制。该温度计带电子时钟,其检测范围为l0℃~30℃,检测分辨率为1℃,采用LCD液晶显示,整机静态功耗为0.5μA。其系统设计思想对其它类型的超低功耗微型便携式智能化检测仪表的研究和开发,也具有一定的参考价值。 1元器件选择    本系统的温度传感器可选用热敏电阻。在10~30℃的测量范围内,该器件的阻值随温度变化比较大,电路简单,功耗低,安装尺寸小,同时其价格也很低,但其热敏电阻精度、重复性、可靠性相对稍差,因此,这种传感器对于检测在1℃以下,特别是分辨率要求更高的温度信号不太适用。   显示部分可以采用笔段式LC
[安防电子]
一种基于MSP430的<font color='red'>超低</font><font color='red'>功耗</font>电子温度计的<font color='red'>设计</font>
基于GP21+EFM32的超低功耗超声波热量表电路模块设计
  基于32位Cortex-M3内核的超低功耗微控制器EFM32与ACAM公司的高集成度TDC-GP21芯片推出的超声波热量表方案,能够充分发挥EFM32的超低功耗与高运算能力的特点及GP21高精度的测量能力,它将成为超声波热量表方案中的最优之选。    主控及显示部分   超声波主控MCU采用EFM32TG840F32,它是基于ARM公司的32位Cortex-M3内核设计而来,对比于传统的8位、16位单片机,它具有更高的运算和数据处理能力,更高的代码密度,更低的功耗。实际数据显示,EFM32TG840在执行32位乘法运算仅需4个内核时钟周期,32 位除法运算仅需8个内核时钟周期,而相应热表上运用的16位单片机却分别需要50和4
[电源管理]
基于GP21+EFM32的<font color='red'>超低</font><font color='red'>功耗</font>超声波热量表电路模块<font color='red'>设计</font>
电容电感测试仪设计
1 测量原理   采用LC振荡器的振荡原理,LC振荡器选择L或是C参数为固定值。通过LC的组合,振荡器起振,当测量电容时电感固定,测量电感时电容固定。通过LC振荡器的频率计算公式    其中,,可以计算出待测的电容或电感数值。   2 电路工作原理   2.1 电路框图设计   如图1所示。框图包括输入切换部分、振荡部分、分频部分、单片机部分、显示部分和键盘部分。此系统由STC89C51单片机作为控制核心,输入切换部分采用双刀双掷继电器完成待测电容或电感的线路切换,振荡电路工作在放大谐振状态,频率有高频管9018的集电极输出,由于频率较高,所以需经过信号分频,再者由于输出的电压幅度大,此处无需再加一级驱动,以74LS
[测试测量]
漏电保护器智能化测试仪设计
  目前,漏电保护器作为一种新型的低压保护电器无论在城市还是在乡村安装使用非常普遍,它工作的可靠性直接影响人身安全。在美国是政府强制规定推行的用电安全保护装置,并且每两年必须更换。我国对漏电保护器的使用虽然没有强制规定更换的年限,但从用电安全的角度考虑,定期对漏电保护器工作性能检测是必须要做的。本文介绍了漏电保护器动作特性自动测试仪,可测量和记录漏电保护器的触头分断时间、漏电动作电流和不动作电流,提供了改善漏电保护器工作性能的重要技术指标,检测自动化水平高,能检测在线与非在线运行的漏电保护器。   1 硬件设计方案   反映漏电动作性能的主要3个参数是:额定漏电动作电流(I△n)、漏电动作时间和额定漏电不动作电流(I△n0)。
[测试测量]
漏电保护器智能化<font color='red'>测试仪</font>的<font color='red'>设计</font>
基于CAN总线和虚拟仪器技术的汽车CAN节点测试仪设计
引 言 Controller Area Network(控制器局域网,缩写为CAN),是为解决汽车电子控制单元间的信息通信而由德国Bosch公司提出的一种总线标准,以其卓越的性能、极高的可靠性和低廉的价格,现在已经在汽车领域获得广泛应用。 为了保证汽车CAN总线节点安全、稳定运转,同时为了提高大批量生产的效率,必须在生产过程中对CAN节点产品进行测试,开发基于CAN总线的汽车CAN节点测试仪显得十分重要。本文通过选择高速处理器和采用虚拟仪器技术保证测试仪的通用性,使其只需通过软件更新便可测试多个CAN节点。 CAN协议简介 CAN协议建立在ISO/OSI 7层开放互连参考模型基础之上,为了方便应用,同时保证各节点间无差错的数
[测试测量]
基于CAN总线和虚拟仪器技术的汽车CAN节点<font color='red'>测试仪</font><font color='red'>设计</font>
小广播
最新电源管理文章
换一换 更多 相关热搜器件
随便看看
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved