基于数字电源控制器UCD3138的一种新的输入电流检测方法(二)

最新更新时间:2014-06-18来源: 互联网关键字:数字电源控制器  UCD3138 手机看文章 扫描二维码
随时随地手机看文章

3 读取三角波的平均值

3.1 测试原理简述

在UCD3138 的EAP1/EAN1 引脚(如图4)接入直流电平信号或三角波信号,然后配置合理的

oversample,averaging 和采集的周期个数,最终在KI_YN 寄存器可以得到样本总和。

然后将样本总和与样本个数相除,便得到了样本的平均值。

3.2 直流电平信号平均值的读取

在EAP1 引脚接入直流电平信号(如图9 左中的CH1),实测平均值为220mV。

通过配置oversample 为8 次,averaging 为8 次,在两个周期内得到的平均值为-156÷8=-19.5。此时,DAC_Value 寄存器中写入的值为2048,因此,根据软件采样确定的平均值为:

(2048÷16)×1.5625mV - (-19.5)= 219.5mV

该值与实际值的偏差小于-0.5%。上述公式的含义可以参考“参考文献5”。

 

 

Figure 9. 直流信号平均值读取

3.3 三角流平均值的读取

在EAP1 引脚接入三角波信号(如图10 左中的CH1),实测平均值为136mV。

通过配置oversample 为8 次,averaging 为8 次,在两个周期内得到的平均值为466÷8=58.25。此时,DAC_Value 寄存器中写入的值为2048,因此,根据软件采样确定的平均值为:

(2048÷16)×1.5625mV - 58.25= 141.75mV

该值与实际值的偏差小于5%。

 

 

Figure 10. 三角波信号平均值读取

3.4 软件流程与代码

图11 是整个数据处理的软件流程图,主要包含主程序中的初始化与配置,快中断程序中的数据处理等两个部分。

对快中断部分,使用周期快中断,中断间隔为256 个周期。每次处理都是连续三次进入快中断,在第一次进入快中断后,配置EADC 和Filter;在第二次进入后进行数据读取,此时在KI_YN 中共有8×256=2048 个样本的累加和。(oversample 设置为8)

 

 

Figure 11. 软件处理流程

关键代码如下:

1. 配置Dpwm0 周期中断及打开中断功能

 

 

2. 快中断处理程序

仅在第二次和第三次进入快中断后进行数据的读取。

 

3. 配置函数handle_current_averaging_config()

该函数主要完成EADC1 与Filter1 的连接配置、EADC 的基本配置(包括DAC_VALUE 的写入, AFE_GAIN 的配置,Averaging 的配置等)、Oversample 的配置及Filter 的配置。

 

 

4. 配置函数handle_current_averaging()

该函数主要完成KI_YN 寄存器中数据的读取,Filter 的复位(需要对KI_YN 寄存器清零,不

然该寄存器会溢出)及Filter 的使能等。

 

4 实测单板输入电流

4.1 测试单板概述

在一款基于UCD3138 的硬开关全桥EVM 板(UCD3138HSFBEVM-029)上进行输入电流的实际测试。该单板的关键技术规格如下:

● 输入电压:36V~72V

● 输出功率:12V×30A

● 功率拓扑:单级硬开关全桥

● 电流互感器:如图2 所示,T1 的匝比为100:1,Rs 为10 ohm。

为实现EADC1 和Filter1 读取和计算输入电流,需要将电流互感器副边侧的输出连接到EAP1 和EAN1。单板其余部分保留原有设计。

4.2 实测数据

1. 输出电流设定为3A,输入电压设定为50V

实测电流互感器的输出信号如图12(左),其平均值为89.26mV。此时输入电流为850mA,二者存在近似比例关系。比例系数主要由互感器的匝比与采样电阻决定:0.01×10=0.1。

 

 

Figure 12. 实测波形及实际读取数据1

将DAC_VALUE 设定为1024,通过软件计算后,读取到的current_x16 变量(该变量含义参考3.4小节)值为9,如图12(右)所示。因此,计算出的平均值为:

(1024÷16)×1.5625mV – 9 = 91mV

该值与实测值的误差小于5%,与实际输入电流的误差小于7%。

2. 输出电流设定为3A,输入电压设定为55V

实测电流互感器的输出信号如图13(左),其平均值为82.48mV。此时输入电流为780mA。

 

 

Figure 13. 实测波形及实际数据读取2

将DAC_VALUE 设定为1024,通过软件计算后,读取到的current_x16 变量值为15,如图13(右)所示。因此,计算出的平均值为:

(1024÷16)×1.5625mV – 13 = 87mV

该值与实测值的误差小于5%,与实际输入电流的误差小于12%。

5 总结

通过上文描述可知,在对UCD3138 的EADC 和Filter 进行相应配置后,可以完成对EAP/EAN 引脚输入信号平均值的读取,而且读取值与实际值的误差较小。

同样,该功能可以应用于单板输入电流的读取,实测结果亦证实了这一点。受限于轻载条件下实际输入电流与电流互感器的输出存在较大误差,因此,软件读取值与实际输入电流存有一定误差。

关键字:数字电源控制器  UCD3138 编辑:探路者 引用地址:基于数字电源控制器UCD3138的一种新的输入电流检测方法(二)

上一篇:基于数字电源控制器UCD3138的一种新的输入电流检测方法(一)
下一篇:一种嵌入式图形用户界面系统的设计与实现

推荐阅读最新更新时间:2023-10-12 22:41

数字电源控制器与模拟控制器兼容的电路
  最近,超大规模集成(VLSI)技术的发展扩宽了数字控制应用范围,尤其是在电源电子元件方面的应用。数字控制IC具有多种优势,比如裸片尺寸更小、无源元件数量更少、成本更低。 另外,数字控制可利用电源管理总线(PMBus)来完成系统配置;高级控制算法能改善性能;可编程性则可实现应用优化。随着数字电源管理的进一步普及并代替大量模拟控制器,它必须保持现有功能的向后兼容性,从而使数字电源模块和模拟电源模块均可在同一个系统中工作。   模拟电源模块中一般使用输出电压调整,这样最终用户可以通过外部电阻更改电源模块的输出电压。 它具有增强的灵活性,允许将某些经过选择的标准模块用到几乎所有应用中,而无论电压要求如何。图1显示AGF600-48
[电源管理]
让<font color='red'>数字电源</font><font color='red'>控制器</font>与模拟<font color='red'>控制器</font>兼容的电路
ST 全新数字电源控制器可最大程度地提高能效
意法半导体数字电源控制器系列产品新增一款用于双通道交错式升压PFC拓扑的电源 IC STNRGPF02。客户可以使用eDesignSuite软件轻松配置这款IC。这款软件还有助于客户快速完成电路设计和外部元器件的选择。 STNRGPF02让600W至6kW的应用也可以享受数字电源带来的优势,例如,与典型模拟控制方法相比,ST解决方案的灵活性更高,设计周期更短;同时,与其它数字解决方案相比,ST解决方案的系统集成度比更高,无需另配DSP处理器或微控制器 (MCU)。 STNRGPF02的典型应用包括工业电机、空调、家用和商用电器、移动通信基站、电信基础设施、数据中心设备和不间断电源(UPS)。 STNRGPF02是
[电源管理]
ST 全新<font color='red'>数字电源</font><font color='red'>控制器</font>可最大程度地提高能效
简单电路使数字电源控制器与模拟控制相兼容
数字控制IC具有多种优势,比如裸片尺寸更小、无源元件数量更少、成本更低。数字控制可利用电源管理总线(PMBus?)来完成系统配置;高级控制算法能改善性能;可编程性则可实现应用优化。 随着 数字电源管理 的进一步普及并代替大量模拟控制器,它必须保持现有功能的向后兼容性,从而使数字电源模块和模拟电源模块均可在同一个系统中工作。 模拟电源模块中一般使用输出电压调整,这样最终用户可以通过外部电阻更改电源模块的输出电压。 它具有增强的灵活性,允许将某些经过选择的标准模块用到几乎所有应用中,而无论电压要求如何。 图1显示AGF600-48S30 模拟电源模块中调整输出电压的典型配置。 输出电压可通过改变连接电源模块正输出端或接地端的电阻来进行
[电源管理]
简单电路使<font color='red'>数字电源</font><font color='red'>控制器</font>与模拟控制相兼容
ADI热插入控制器整合数字电源监控功能
亚德诺半导体(ADI)近日宣布推出ADM1272,这是一款创新的+48V热插入控制器和PMBus电源监控器。 ADM1272专为高达80V的高压系统控制而设计,在关键任务系统(如服务器和通讯设备)中提供可靠的插入板保护。 先进的系统控制和电路板电源监控可以提供卓越的保护,防止系统故障以及从高达120V的瞬时电压进行系统重置,从而最大限度地减少系统停机时间并提高系统在所有条件下的可用性。 此热插入控制器的自适应安全作业区域(SOA)保护功能,大幅提高了整体的系统可靠性和MOSFET保护。 有了SOA保护功能,就能够使用比传统热插入控制器解决方案外形更小、成本更低的MOSFET。 其他性能优化功能包括PMBus数字接口,为系统提供实时
[半导体设计/制造]
数字电源控制器UCD3138 的逐周期保护功能说明
摘 要 UCD3138 是德州仪器(Texas Instruments)公司推出的最新一代数字电源控制器,于2012年第一季度正式发布。相比于上一代数字电源控制器UCD30xx,其在诸多方面有着重要改进,功能更加丰富,性能更加强大。本文基于一款采用硬开关全桥(副边采用全波整流)拓扑的开关电源,详细介绍了UCD3138的逐周期保护功能(cycle by cycle limitation)的硬件设计、软件配置和实测数据。在完成对上述功能理解的同时也可以清楚的了解到UCD3138的优势所在。本文的最后部分给出了参考文献。 1 、逐周期保护功能的设计与实现 逐周期(cycle by cycle)保护功
[电源管理]
<font color='red'>数字电源</font><font color='red'>控制器</font><font color='red'>UCD3138</font> 的逐周期保护功能说明
基于数字电源控制器UCD3138的一种新的输入电流检测方法(二)
3 读取三角波的平均值 3.1 测试原理简述 在UCD3138 的EAP1/EAN1 引脚(如图4)接入直流电平信号或三角波信号,然后配置合理的 oversample,averaging 和采集的周期个数,最终在KI_YN 寄存器可以得到样本总和。 然后将样本总和与样本个数相除,便得到了样本的平均值。 3.2 直流电平信号平均值的读取 在EAP1 引脚接入直流电平信号(如图9 左中的CH1),实测平均值为220mV。 通过配置oversample 为8 次,averaging 为8 次,在两个周期内得到的平均值为-156÷8=-19.5。此时,DAC_Value 寄存器中写入的值为2048,因此,根据软件采样确定的平均值为: (2
[电源管理]
基于<font color='red'>数字电源</font><font color='red'>控制器</font><font color='red'>UCD3138</font>的一种新的输入电流检测方法(二)
TI基于UCD3138的高整合度新一代数字电源方案
  数字电源是以数字信号处理器(DSP)或微控制器(MCU)为核心,将数字电源驱动器、PWM 控制器等作为控制对象,能实现控制、管理和监测功能。   模拟电源和数字电源对比图   目前,数字电源应用主要在通信电源,服务器电源和 PC 电源等产品,这些应用的特点是可控因素多、实时反应速度块、需要多个模拟系统管理、复杂的高性能系统。   未来,数字电源市场还将持续繁荣发展,除了通讯基础设施的应用之外,该技术也会向照明与消费导向的应用领域扩展。据IHS公司旗下IMSResearch 的报告,预计2017年全球数字电源市场营业收入将增至124亿美元,是2013年预期水平37亿美元的三倍多。   全球数字电源市场营业收入预测(
[电源管理]
小广播
最新电源管理文章
换一换 更多 相关热搜器件
随便看看
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved