基于UC1845的多路输出双管反激开关电源方案

最新更新时间:2014-06-20来源: 互联网关键字:UC1845  多路输出  开关电源 手机看文章 扫描二维码
随时随地手机看文章

  引言

  随着器件、工艺水平的飞速发展,开关型功率变换器已发展成高效、轻型的直流电源,空间飞行器(星、箭、船等)DC/DC变换器(又称二次电源)也采用该项技术。

  主要原因是卫星电子设备对电源的效率、重量、体积和可靠性的要求越来越高,而传统的线性电源方案几乎无法满足飞行器系统的需要。在各种类型的DC/DC变换器中,PWM型DC/DC变换器因结构种类多,技术领先,便于实现,已经得到广泛应用。

  在航天应用领域开关电源的多种拓扑中,可用于100V高压母线输入多路输出的开关电源,大多数采用的是两级式变换器,如Buck+推挽两级式变换器,先通过Buck电路将母线电压降压,这样母线电压要经过二次调整,使电压调整率降低;再从器件数量上来说,两级拓扑,功率开关管至少需要3个,电源体积大且功率密度低,从整体分析不是很理想;而对于可以承受高压输入的双管正激开关电源来说,电路结构相对简单,但其不适合用于多路输出的场合,输出交叉调整率较低,稳定度差;适合用于中小功率多路输出DC-DC变换器的电路拓扑还有是单管反激电路,其电路结构简单,成本低,但在高输入电压场合中单管反激电路主开关管的电压应力非常高,选用200V耐压的MOSFET管根本无法满足Ⅰ级降额的要求,如果选用更高耐压的MOSFET管,由于其导通电阻更高,势必影响电源的转换效率,同时还可能带来真空环境下的低气压放电问题。

  因此为了克服以上所提到的问题,本文设计了一种星上用基于UC1845的多路输出双管反激开关电源,很适合应用于高压100V母线输入、多路输出场合。对于双管反激开关电源,首先,其电路拓扑简单,输入输出电气隔离升/降压范围广,具有输出多路负载自动均衡等优点;其次,由于航天电源对可靠性的要求,所有器件必须满足一级降额标准,在双管反激变换电路中,当功率管关断时,变压器漏感电流可通过续流二极管反馈给电源同时将开关管两端的电压箝位在电源电压,因此功率管所承受的电压应力和输入电压相等,使选管的范围扩大,可靠性提高;再次,双管反激开关电源电路漏感能量可以回馈到输入侧,无须增加任何吸收电路,因而转换效率也比单管反激电路高。因此将其运用于航天器高压输入多路输出场合,优势很大,具有实际的工程应用价值。

  1、系统设计图

  系统设计框图如图1所示。

  2、双管反激拓扑结构

  双管反激拓扑结构如图2所示。

  如图2所示,VT1和VT2分别串接于变压器的顶端和底端。两个开关管同时导通和关断,当它们导通时,所有初级和次级的同名端为正,此时次级VD3反偏,次级无电流流通,初级绕组储存能量;当它们关断时,存储于励磁电感上的电流使所有绕组电压极性反向,VD3正偏,励磁电感中储存的能量被传输到负载,而此时LP同名端电位被二极管VD2钳位至地,LP异名端电位被二极管VD1钳位至电源电压U1.所以,VT1的源极电压不会超过U1,VT2的漏极电压也不会超过U1.漏感尖峰被钳位,使任一开关管的最大电压应力都不会超过最大直流输入电压。

  双管反激变换器还有一个显着的优点是没有漏感能量消耗。开关管导通时,存储于漏感中的所有能量不是消耗于电阻元件或功率开关管内,而是在开关管关断时通过VT1和VT2回馈给U1.漏感电流从LP的异名端流出,经VD1流入U1的正极,然后从其负极流出,经VD2返回LP的同名端,使漏感能量能回馈到输入侧,提高了整机的转换效率。

  在航天电源中,对于高压100V母线输入电源,双管反激开关电源便显示出极大的优势。

  3、UC1845控制电路

  UC1845是由TexasInstruments公司生产的电流控制型PWM控制器,该芯片电路开关频率可调节,具有电流反馈和电压反馈双环控制的特点,电压调整率和负载调整率高。其内部功能模块框图如图3所示。图3中,UC1845主要包括:

  5.0V基准电压源,高增益的误差放大器,电流比较器,RS触发器和欠压锁定电源电路。具有8脚封装的UC1845芯片各引脚功能如下:脚l为误差放大器输出,用于环路补偿;脚2是误差放大器的反相输入,通常通过一个电阻分压器连至开关电源输出,起电压反馈作用,调整输出的占空比,从而稳定输出电压;脚3为电流取样引脚,脉宽调制器使用此信息终止输出开关的导通,保护开关管,避免过流损坏;脚4用于定时,通过时间电阻RT,连接至参考输出引脚8以及时间电容CT连接至地,使振荡器频率和最大输出占空比可调,振荡频率为f=1.72(RTCT);脚5是控制电路和电源的公共地;脚6是输出驱动开关管的方波引脚。为图腾柱式输出,可直接驱动功率管MOSFET的栅极;脚7是控制集成电路的正电源(VCC)启动电压为8.4V,最大输出电流可以达到1A,适合驱动MOSFET以及适用于中小功率的DC/DC开关电源;脚8是内部基准电压源产生5.0V基准电压,作为UC1845内部电源,经衰减得2.5V电压作为比较放大器基准,并可作为向外电路输出5V/50mA的电源。UC1845还包括过压、欠压保护电路,当供电电源电压低于7.6V时,芯片停止工作。

  UC1845具有很高的工作温度范围,可以在-65~150℃的范围内稳定的工作,可满足航天应用。

  4、主体电路设计

  主体电路以双管反激电路为总的系统框架,用UC1845芯片和相应的外围电路构成PWM控制器,反馈电路采用了磁隔离反馈,通过一个反馈控制量实现多路输出,在输出端配合应用低压差三端稳压器,可以提高各路输出负载稳定度。

  4.1反馈控制电路设计

  在常用的隔离反馈技术中,航天方面选用磁反馈较光耦反馈要更为可靠和稳定。相对于磁反馈而言,光耦反馈虽然更能达到所需的带宽,且电路简单、元件少,但在高温下光耦的传输比(CTR)会变小,会导致运放饱和,使输出电压的反馈控制失效。磁反馈比光耦反馈寿命长,受温度影响小。抗辐照能力强,故在航天方面选用磁反馈较光耦反馈要更为可靠和稳定。

  本电路中控制电路围绕脉宽调制器UC1845进行设计,采用满足航天应用的磁隔离反馈技术。电路电压采样不是直接从输出端采样而是采用了磁隔离反馈技术。这种设计可以不借助启动隔离电路而实现离线式输出,线路简单,但带来的缺点是如果输出端不使用低压差三端稳压器负载调整率做不到很高,可以通过对变压器的设计和对变压器原边电感的计算使其工作于临界连续模式,可对输出电压负载调整率有一定改善;电流环采样信号与自持电压采样反馈信号和基准电压信号进行比较,得到误差控制信号进行比较得到PWM控制信号构成了电流型控制双环控制系统对开关功率管进行开关控制,实现闭环反馈控制。

  UC1845启动电压在电路每次启动时是通过启动辅助供电电路降压启动,将PWM电路的启动工作电压稳定在10~12V范围内,使PWM电路安全可靠地启动并工作;在电源模块正常工作后,由于双管串联反激电路主变压器用于给PWM供电的自持绕组输出电压比降压启动输出电压略高,使得整流二极管被反向截止,该电路无输出功率,而PWM电路通过主变压器自持绕组输出电压长期供电,这样降低了电路功耗。

  4.2双管反激式开关电源变压器设计

  此双管反激式变压器的绕制采用“三明治”式绕法,如图4所示,即初级绕组先绕一半,再绕次级绕组,绕后再将初级绕组剩余的匝数绕完,将次级绕组包裹在里面,这样漏感最小。且使输出绕组和自持绕组并绕以实现最佳耦合效果。

  反激式开关电源变压器不同于其他双极型变压器,能量不仅要传递,还要在变压器电感中储存,并实现隔离作用,它实际作为一个变压器-扼流圈发挥作用。因此变压器设计也不同于其他电路,初级绕组电感值直接影响电路中的电压、电流波形。

  关键参数设计:

  由已知条件计算出总输出功率,确定磁芯截面积S.

  和磁芯工作磁感应强度ΔB,选择合适的磁芯。

  初级线圈的峰值电流:

  式中,N1是最小的初级匝数;Vmin是最大的初级电流电压(单位:V);TON是开关管Q1的最大导通时间(单位:

  μs);B是AC磁通密度变化的峰-峰值(单位:T),铁氧体典型值为200mT;Ae为磁芯中心柱的有效面积(单位:

  5、实验结果

  本文设计的适用于航天器用宽输入电压范围的双管串联反激、磁隔离反馈、高稳定三路输出DC-DC变换器,电源输入母线电压范围为60~120V(标称:100V),输出电压为5V/0.8A、±12V/0.3A,额定输出功率为11.2W,典型效率为75%以上,输出端使用低压差三端稳压器的情况下,输出电压负载稳定度优于±1%.

  5.1开关电源输出实验结果

  为了检验该开关电源的性能,对上述应用电路进行了性能测试。开关电源的电压调整率、负载调整率、纹波和效率如表l所示(表中UPP为电压峰峰值)。

  从实验结果可知,在宽电压输入变化范围内输出电压稳定。

  5.2电流采样环波形

  电流环波形如图5所示。

  5.3主开关管漏-源波形

  主开关管漏-源波形如图6所示。

  6、结语

  实验证明本文所设计的基于UC1845多路输出双管反激开关电源开关电源具有良好的工作性能,输出纹波小,反馈环节易于调整,保护动作迅速可靠。符合航天电源可靠性要求,特别适用于中小功率高压母线输入多路输出场合。

关键字:UC1845  多路输出  开关电源 编辑:探路者 引用地址:基于UC1845的多路输出双管反激开关电源方案

上一篇:电源技术基础:减少开关损耗的“软开关”技术
下一篇:详解开关电源变压器的漏感

推荐阅读最新更新时间:2023-10-12 22:41

工程师必知:教你熟透开关电源设计的各种元器件
 设计 开关电源 并不是如想象中那么简单,特别是对刚接触 开关电源 研发的童鞋来说,他的外围电路就很负责,其中使用的元器件种类繁多,性能各异。要想设计出性能高的 开关电源 就必须弄懂弄通开关电源中各元器件的类型及主要功能。本文将总结出这部分知识。 开关电源外围电路中使用的元器件种类繁多,性能各异,大致可分为通用元器件、特种元器件两大类。开关电源中通用元器件的类型及主要功能如下:   一、 电阻器:   1. 取样电阻 构成输出电压的取样电路,将取样电压送至反馈电路。   2. 均压电阻 在开关电源的对称直流输入电路中起到均压作用,亦称平衡电阻。   3. 分压电阻 构成电阻分压器。
[电源管理]
开关电源EMI形成原因及常用抑制方法
  近年来, 开关电源 以其效率高、体积小、输出稳定性好的优点而迅速发展起来。但是,由于开关 电源 工作过程中的高频率、高di/dt和高dv/dt使得电磁干扰问题非常突出。国内已经以新的3C认证取代了CCIB和CCEE认证,使得对开关电源在电磁兼容方面的要求更加详细和严格。如今,如何降低甚至消除开关电源的EMI问题已经成为全球开关电源设计师以及电磁兼容(EMC)设计师非常关注的问题。本文讨论了开关电源电磁干扰形成的原因以及常用的EMI抑制方法。   1开关电源的干扰源分析   开关电源产生电磁干扰最根本的原因,就是其在工作过程中产生的高di/dt和高dv/dt,它们产生的浪涌电流和尖峰电压形成了干扰源。工频整流滤波使用的大电容
[电源管理]
<font color='red'>开关电源</font>EMI形成原因及常用抑制方法
如何设计大容量开关电源
  在通讯、电力领域,要求的直流电源系统输出的电流电压各不相同。对于大容量电源系统,往往采用多个同一电压等级的小容量电源模块并联的方法来实现,但如果并联的电源模块太多,就不利于均流和可靠性,因此用户迫切要求大容量电源模块的出现,基于这种背景作者开发了大容量开关电源。   目前的大容量开关电源一般是由主电路、控制电路组成,而智能化开关电源,往往还有微机构成的数控系统--在实现智能化功能的同时,还对开关电源的一些关键参数及各种故障信号进行检测传送给上位机,同时上位机的一些控制量也可通过微机系统对开关电源的输出电压、电流进行控制,本文采用PIC单片机作为开关电源智能化的核心引导控制电路和主电路进行工作。   大容量开关电源主电路中
[电源管理]
如何设计大容量<font color='red'>开关电源</font>?
触发管在高压开关电源保护电路中的应用
1 引言 触发管是利用管内气体介质在外加电场的作用下产生放电而实现各种不同应用目的的器件。根据管内气体压力的不同可分为充气触发管和真空触发管两类,其工作机理基本相同。触发管大多作为脉冲功率装置中大功率通断开关以及过电压与过电流保护的通断开关。最典型的应用是行波管保护电路。 触发管因其快速反应能力,不但能用于保护行波管这一类特性不稳定的负载,还可用于保护高压开关电源本身,解决了开关电源由于反馈控制延时带来的过压保护问题。 2 触发管的结构及工作原理 以冷阴极触发管为例来介绍触发管的基本工作原理。典型冷阴极触发管是一种陶瓷金属(或玻璃金属)封装的三电极充气开关器件,能在短时间内控制导通一定的电流能量。 图1示出
[电源管理]
触发管在高压<font color='red'>开关电源</font>保护电路中的应用
工程师分享:节能灯线路板改为开关电源的设计
电子 节能灯 的广泛使用给人们的日常生活带来了新的变化, 而随之也带来了大量用坏的节能灯。根据统计数据表明, 这些 节能灯 大部分只是灯管烧坏 线路板 部分基本上都是好的。因此可利用其改造成各种用途的小型 开关电源 。 改造的原则 1、选用线路板成色较新、做工较好、布局设计合理、使用元器件余量较大者; 2、改造后的开关电源的输出容量一般不能大于所选用的节能灯的瓦数; 3、改造时要重新计算输出变压器的参数。 改造的方法 下面将以一个具体的例子来介绍改造的方法。 图1 性能较好的普及型电子镇流器电路图 1、镇流器的选用 由于半桥电路抗电压不平衡的能力较好, 因此对于大部分小功率的电子 节能灯 来说都是选用半桥电路。在改造开关
[电源管理]
工程师分享:节能灯线路板改为<font color='red'>开关电源</font>的设计
高频开关电源双闭环反馈并联系统
1.前言 高频开关电源在二十世纪八十年代进入我国后,由于其具有体积小.重量轻.效率高.噪音低等优点,大量地进入我国邮电通讯.电力部门及其它领域,其发展迅速,市场潜力巨大,取代了许多传统的中小功率可控硅整流电源.而在传统的工矿企业,如电解电镀.电化.电火花.电池充电.水处理.热处理.焊接.冶炼等诸多领域,目前还在大量使用传统的可控硅整流电源,不符合国家环保节能的政策.目前市场上的单台高频开关电源功率受到器件的约束及其它因素的限制,难以在大功率(50KW以上)场合实用需要.为了把功率做大,简单的方法就是把许多单台高频开关电源,将其输出简单并联,形成扩流输出.但这种方法有一个局限性,那就是并联后的系统只能是稳流输出,而不能适应稳压输
[电源管理]
高频<font color='red'>开关电源</font>双闭环反馈并联系统
采用VIPer22A的10W空调开关电源
目前,新型空调机采用两个主低压输出给内部电子设备供电。这两个主输出的低压分别是+12V和+5V。低输出电压是由一个内部开关电源产生。这个开关电源需要以下多个重要特性∶效率高,重量轻,尺寸小,待机功耗低等。设计人员利用VIPerX2系列产品可以开发出一个含有所有这些重要功能的电源,因此,该系列产品是开发空调应用的最理想的解决方案, 特别是本文介绍的电路板是为改进图1所示的特性而专门开发的,表1列举了空调开关电源的技术规格。 新型空调机采用两个主低压输出给内部电子设备供电。这两个主输出的低压由一个内部开关电源产生,它们分别是+12V和+5V。这个开关电源应该具有效率高、重量轻、尺寸小、待机功耗低等特性。本文介绍了利用VIPerX2系列
[应用]
必看!论电源中安规电容的重要性
不知道大家有没有过这样的经历:小时候很好奇,什么东西都想碰,去摸插座电源,结果被电到了?小编小时候就做过这样的事情,因为年纪小无知还好奇,被电到了和家长说反而还挨骂。看到这几年触摸插板结果触电而亡的新闻就觉得很揪心。现在想想就小编这个好奇心能活到现在真的不容易,还让父母担心。 电源里有不同的电子元件,打开开关电源可以看到里面有个黄色盒型电子元件和蓝色圆形电子元件,这两个电子元件就是安规电容,黄色盒型的是安规X电容,蓝色圆形的是安规Y电容。那么它们在开关电源里是做什么用的呢?那么我们先来搞清楚什么是安规电容。 安规电容是指外部电源断开后会迅速放电,人触摸不会有触电感,而且安规电容失效后,不会导致电击,不会伤害人体。而普通电容
[嵌入式]
必看!论电源中安规电容的重要性
小广播
最新电源管理文章
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved