高频条件下IGBT驱动电路的设计与仿真

最新更新时间:2014-06-21来源: 互联网关键字:高频条件  IGBT  驱动电路 手机看文章 扫描二维码
随时随地手机看文章

  绝缘门极双极型晶体管是复合了功率场效应管和电力晶体管的优点而产生的一种新型复合器件,具有输入阻抗高、工作速度快、热稳定性好、驱动电路简单、饱和压降低、耐压高和承受电流大等优点,因此现今应用相当广泛。但是IGBT良好特性的发挥往往因其栅极驱动电路设计上的不合理,制约着IGBT的推广及应用。本文分析了IGBT对其栅极驱动电路的要求,设计了一种适用于高频条件下小功率电路可靠稳定的分立式IGBT驱动电路。

  1 IGBT驱动电路的基本要求

  IGBT的驱动电路是IGBT与控制电路之间的接口,实现对控制信号的隔离、放大和保护,驱动电路对IGBT的正常工作及其保护起着非常重要的作用,门极电路的正偏压uGS,负偏压-uGS和门极电阻Rc的大小,对IGBT的通态电压、开关、开关损耗、承受短路能力参数有不同的程度的影响,因此驱动电路设计对IGBT的动态和静态性能都有重要影响,对驱动电路提出以下要求:

  ①动态驱动能力强,能为栅极驱动电压脉冲提供充分大上升率和下降率,以减小开通和关断损耗。但是,由于主电路中存在分布电感及滤波电容的串联电感,随着IGBT的高速开通与关断将在电路中产生高频幅值很高而宽度很窄的尖峰电压Ldi/dt,该尖峰电压应用常规的过电压吸收电路是吸收不掉的,因而有可能造成IGBT自身或电路中其他元件过电压击穿而损坏。所以,主电路应尽可能使用短引线或双绞线降低分布电感的影响,而且IGBT开关时间也不能过短,其值应根据所有元件及IGBT自身的承受du/dt的能力综合考虑。

  ②能向IGBT提供适当的正向栅极电压,IGBT导通后的管压降与所加栅源电压有关,在集射极电流一定的情况下,uGE越高,uCE就越低,器件的导通损耗就越小,这有利于提高开关效率。但是,uGE并非越高越好,一般不允许超过20V,原因是一旦发生过流或短路,栅压越高,则电流幅值越高,IGBT损坏的可能性就越大。通常取15V为宜。

  ③能向IGBT提供适当的反向栅极电压。IGBT栅射极施加的反向偏压有利于其快速关断,但-uGE反向偏压受IGBT栅射极之间反向最大耐压的限制,过大的反向电压会造成IGBT栅射极的反向击穿,所以-UGE应取合适的值,一般为-2V~-15V。

  ④有足够的输入输出电隔离能力。由于IGBT多用于高电压场合,而控制电路并不与高压电路有直接耦合,所以驱动电路应与整个控制电路在电位上有严格的隔离。但是,这种电隔离不应影响驱动信号的正常传输。

  ⑤具有栅极电压限幅能力,保护栅极不被击穿。IGBT栅极限电压一般为-20~+20V,超出此范围就可能破破环栅极。

  ⑥选择合适RG,IGBT驱动电路中的RG对工作性能有较大的影响,RG较大,有利于抑制IGBT的电流上升率及电压上升率,但会增加IGBT的开关时间和开关损耗,RG较小,会引起电流上升率增大,使IGBT误导通或损环。RG的具体数据与驱动电路的结构及IGBT的容量有关,一般在几欧一几十欧。

  ⑦IGBT的栅极驱动电路应尽可能的简单、实用,最好具有对驱动IGBT的完整保护能力及很强的抗干扰性能,而且输出阻抗应尽可能的低。

  ⑧由于栅极信号的高频变化,造成同一个系统多个IGBT的栅极驱动电路相互干扰。为防止干扰的出现,引线应采用绞线或同轴电缆屏蔽线,同时栅极驱动电路中IGBT模块栅射的引线也应尽可能的短。

  2 实用型IGBT驱动电路

  针对IGBT驱动电路的上述要求,在工程实践中提炼出一种简单实用的分立式IGBT驱动电路,其电路简图如图1所示,在电路简图中:Q1,Q3为NPN型三极管,Q2,Q4为PNP型三极管,D1~D4为保护二极管,二路PWM控制信号A,B为高电平或低电平,即A为高电平,B为低电平时,Q1、Q4导通,Q2、Q3关断,此时,Q1、Q4和T1原边绕组就形成通路,脉冲电压加在T1的原边,与原边同相位的次边得到开通驱动信号,与原边相反的次边得到关断驱动信号。这些部分的作用是将A、B信号推挽放大,并通过隔离变压器T1将驱动信号发生电路与高压电路隔离。

  

  当开通驱动信号加在CD端时,在脉冲的上升沿,电容C1相当短路,通过门极电阻R1和加速电容C1向IGBT栅极提供较大电流,降低驱动脉冲的上升时间,最终IGBT因uGE上升至15V而导通。同时因为NPN三极管Q5的门极通过R2接至低电平,因此处于截止状态,对IGBT的导通没有影响;在脉冲平顶期,此时,IGBT的输入电容Cies已经满电,此时IGBT的G-E极之间相当于断开,变压器次边VCD保持高电平。当脉冲下降沿到来时,IGBT的输入电容在这段时间要反向放电,若放电速度太快,会引起极大的关断尖峰,造成IGBT的损坏;若放电速度太慢又会造成IGBT关断时间过长,形成较大的拖尾电流,造成关断损耗增加,降低效率。因此应该适当控制IGBT输入电容的放电速度。在图1的实用型驱动电路中,可以通过改变Q5的限流电阻R2和加速电容C1的值来实现Cies适当放电:当C1较大,R2较小时,一方面电容C1中储存的电量较大,另一方面,三极管Q5基极电流大使得发射极电流大,因此Cies的放电速度较大;当C1较小,R2较大时,Cies放电速度减小。又因为C1往往大于Cie-s,因此在输入电容Cies放电结束后,即IGBT关断后,C1上可能还残存少量电量,若没有适当的放电回路,这个电容经过几个脉冲周期后充满电荷,而失去加速作用,所以要求C1在每个周期上升沿到来时,电容上无存储电荷,因此在IGBT的G-E端并联电阻R3,给电容C1提供放电回路。D5为15V稳压管,防止驱动信号失控而造成的IGBT损坏。

  3 仿真结果及分析

  运用PSpice软件在脉冲频率50kHz,占空比为50%,输入电压600伏,负载600欧的条件下来对比该实用型驱动电路与普通驱动电路的驱动效果。图2为仿真波形图,从波形图可以看出,在脉冲信号(V(V1))的上升沿普通的驱动信号也快速上升,使得流经IGBT集射极电流(图中间的I(R1))急剧上升,而实用驱动信号有一个可适宜的的斜率,防止因du/dt过大而造成的对IGBT的损害,并能可以通过调节R1的值来以使集射极电流以一个适宜的斜率上升。在脉冲信号的下降沿,普通驱动的集射极电流拖尾时间长为2.7μs,而采用实用型驱动电路的CE端电流拖尾时间只有1.3,下降时间的减少,有利于减少IGBT集射极二端电流与电压共同作用时而产生的功耗,能够较好减少关断损耗,提高效率。

  

  4 结束语

  通过以上分析可知,IGBT的门极驱动条件密切地关系到IGBT的静态和动态性能。门极电路的开通电压,关断电压,开通电压上升率,关断电压下降率对IGBT的通态电压、开关速率、开关损耗、承受di/dt电压等参数有不同程序的影响。调节R1可获得适宜的脉冲前沿上升率,即保证IGBT能在尽量短的时间内导通,又保证不会因为du/dt过大而产生尖峰或对IGBT造成损坏;取适宜C1值,使电容C1即能引收因高频开关造成的尖峰。又能与R2配合,加快IGBT的关断,减小平均拖尾电流的大小和拖尾电流存在的时间,上述参数的大小一般要通过多次试验来确定,以达到最佳驱动将是。

  此驱动电路已经在2000W高频移相软开关直流电源中得到应用。由于其只采用简单的分立式元件,不需要专业芯片,结构简单,成本低廉。而且可靠性高,因此非常适合小功率的IGBT开关电路,具有很大的应用前景。

关键字:高频条件  IGBT  驱动电路 编辑:探路者 引用地址:高频条件下IGBT驱动电路的设计与仿真

上一篇:如何设计光伏发电系统中的逆变器
下一篇:基于全桥逆变电路的野外用微波炉

推荐阅读最新更新时间:2023-10-12 22:41

基于FPGA芯片的CCD的硬件驱动电路设计
CCD驱动电路的实现是CCD应用技术的关键问题。以往大多是采用普通数字芯片实现驱动电路,CCD外围电路复杂,为了克服以上方法的缺点,利用VHDL硬件描述语言.运用FPGA技术完成驱动时序电路的实现。该方法开发周期短,并且驱动信号稳定、可靠。系统功能模块完成后可以先通过计算机进行仿真,再实际投入使用,降低了使用风险性。 1 硬件设计 CCD的硬件驱动电路系统的核心器件是SPARTAN系列芯片XC3S50;CCD采用Atmel公司的CCDTH7888A图像传感器;CCD驱动脉冲由XC3S50提供,脉冲信号产生后由驱动模块对脉冲电压进行变换使其符合TH7888A的驱动电压要求。CCD像素输出电压经过A
[嵌入式]
背光驱动电路的选择策略和应用
越来越多的便携式消费电子产品配备了彩色显示屏,例如手机、数码相机、PDA、MP3、PMP播放器等,其中手机又占据了这个市场的绝大部分份额,从而导致了这两年来中小尺寸显示屏产业链的飞速发展。根据应用的不同,显示屏会有不同的种类,例如TFT-LCD、CSTN-LCD以及OLED显示屏,从市场的应用看,OLED显示屏只是在折叠式手机的副屏以及MP3的市场上占有一定的份额,而市场的主流依然是TFT和CSTN,这两种类型的LCD屏占据了现有的中小尺寸显示屏出货量的绝大部分。本文重点就中小尺寸的LCD显示屏的背光驱动解决方案作一个分析介绍。   背光驱动的技术分析   LCD显示屏自身并不发光,为了可以清楚的看到LCD显示屏的内容,需要一定
[应用]
不间断电源UPS中IGBT的应用
绝缘栅双极型晶体管(IGBT)是一种MOSFET与双极晶体管复合的器件。它既有功率MOSFET易于驱动,控制简单、开关频率高的优点,又有功率晶体管的导通电压低,通态电流大,损耗小的显著优点。    1、IGBT在UPS中的应用情况   绝缘栅双极型晶体管(IGBT)是一种MOSFET与双极晶体管复合的器件。它既有功率MOSFET易于驱动,控制简单、开关频率高的优点,又有功率晶体管的导通电压低,通态电流大,损耗小的显著优点。据东芝公司资料,1200V/100A的IGBT的导通电阻是同一耐压规格的功率MOSFET的1/10,而开关时间是同规格GTR的1/10。由于这些优点,IGBT广泛应用于不间断电源系统(UPS)的设计中。这种使用
[电源管理]
安森美扩展功率MOSFET和IGBT驱动器系列
2008年4月14日,电源解决方案供应商安森美半导体(ON Semiconductor,美国纳斯达克上市代号:ONNN)扩展MOSFET驱动器集成电路(IC)系列,推出四款新器件:NCP5106、NCP5104、NCP5111和NCP5304。这些新的功率门驱动器针对中低功率应用,适用于终端产品包括白家电、照明电子镇流器和马达控制等工业应用。 这些新的高压、高端和低端驱动器工作在-40℃至125℃的宽规定工作温度范围,并能工作在高达600伏(V)的输入电压,减轻了设计时间和精力。它们都具有每纳秒(V/ns) 50 V的dV/dt抗扰度,并兼容于3.3 V和5 V输入逻辑。这些器件使用启动电路(bootstrap)
[新品]
英飞凌最新一代IGBT技术平台实现转速与位置的精准控制
IGBT7作为英飞凌最新一代IGBT技术平台,它与IGBT4的性能对比一直是工程师关心的问题。本文通过FP35R12W2T4与 FP35R12W2T7在同一平台伺服驱动中的测试,得到了相同工况下IGBT4与IGBT7的结温对比。实验结果表明,在连续大功率负载工况与惯量盘负载工况的对比测试中,IGBT7的结温均低于IGBT4。 伺服驱动系统响应速度快,过载倍数高,小型化和高功率密度的趋势更是对功率器件提出了更苛刻的要求。英飞凌明星产品IGBT7凭借超低导通压降、dv/dt可控、175℃过载结温、完美契合伺服驱动器的所有需求。英飞凌—晶川—迈信联合研发基于IGBT7的伺服驱动完整解决方案,可显著提高功率密度。驱动芯片采用英飞凌无磁
[嵌入式]
英飞凌最新一代<font color='red'>IGBT</font>技术平台实现转速与位置的精准控制
Yole:新应用加持 IGBT市场前景光明
根据市场研究机构 Yole 的最新报告, IGBT 在电动车/动力混合汽车(EV/HEV)、再生能源(Renewable Energies)、马达驱动器(Motor Drive)、不断电动力系统(UPS)及交通上的应用是该市场的成长动力来源。 IGBT 市场在 2011~2012年少许反常性的下跌后, Yole 分析师预期今年市场已回归稳定成长脚步,具体而言,市场预估将从今年的36亿美元,在5年后达到60亿美元。在Yole的报告中最广泛被分析的是IGBT 在马达驱动器的应用,区分为工业、商业和住宅应用,马达驱动器是带动IGBT市场成长的最大动力。 如风能、太阳能等再生能源领域也是IGBT 市场成长的帮手;不过,这两个产业多赖
[半导体设计/制造]
Yole:新应用加持 <font color='red'>IGBT</font>市场前景光明
新型大功率蓝光LED光源驱动电路设计
为了采集水下目标的图像信息,降低水下成像系统的成本,通过采用大功率蓝光LED代替传统的激光器做光源,结合CCD成像技术,调节光束的发散角来照射水下目标场景,将目标全部或目标的关键特征部位照亮,实现对水下目标的成像。设计了基于IRIS4011构成的大功率蓝光LED的恒压恒流驱动电路。本驱动电路稳定可靠地控制LED在额定功率下工作,通过水下成像实验,采集到了水下目标的信息,实验结果表明窄小的视场范围内跟踪和接收目标信息,很大程度上减小了后向散射光对成像质量的影响,并提高了系统的信噪比和作用距离。 誉为“绿色照明”的半导体(LED)照明技术发展迅猛,LED具有功耗低、使用寿命长、尺寸小、绿色环保等优点。通过对高强度蓝光LED的不断研发产
[电源管理]
新型大功率蓝光LED光源<font color='red'>驱动电路</font>设计
基于51单片机的电动车跷跷板设计
1.引言 本设计为参加电子设计竞赛而作,较好地解决了电动车在跷跷板上的运行和控制问题,系统结构比较简单,控制比较准确。 2.系统方案设计、比较与论证 根据题目的基本要求,设计任务主要完成电动车在规定时间内按规定路径稳定行驶,并能具有保持平衡功能,同时对行程中的有关数据进行处理显示。为完成相应功能,系统可以划分为以下几个基本模块:电动机驱动模块、寻迹线探测模块、平衡状态检测模块、信息显示模块。见图1 图1 系统框图 2.1寻迹线探测模块 探测路面黑色寻迹线的原理:光线照射到路面并反射,由于黑线和白纸的反射系数不同,可根据接受到反射光强弱由传感器产生高低电平并最终通过单片机判断是否到达黑线或偏离跑道。 方案一:由可见光发光二极
[单片机]
基于51单片机的电动车跷跷板设计
小广播
最新电源管理文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved