基于EDA技术的航空电源逆变控制电路设计

最新更新时间:2014-07-11来源: 21IC关键字:EDA技术  航空电源  逆变控制 手机看文章 扫描二维码
随时随地手机看文章

当前航空电源型号各异,种类庞杂,应该说综合性能还不够高。特别是随着航空器的不断发展,其对电源保障需求面临诸多新挑战。因此,研制先进电源保障设备,提高其通用性、综合性,可为现有各类航空器提供通用配套保障,不但能够适应航空器换代的需要,提高其实用性,而且可以压缩保障装备设备的数量和规模。研究事例为航空逆变电源,其特性是负载三相平衡的前提下,能够保证三相电压的幅值、相位始终处于平衡。构成的组合式三相全桥逆变电路见图1.本文引入了技术现代电子设计自动化技术(EDA),综合运用非常超高速集成电路硬件描述语言设计语言(VHDL)和可编程逻辑电路(PLD)元器件进行控制逻辑的设计与实现,对组合式三相逆变电路进行状态控制,获得要求的输出电压及波形。

1正弦脉宽调制方案的设计与计算

脉宽调制(Pulse-width Modulation,PWM)是在固定频率下,设计一定规律的脉宽系列,控制逆变器的开关器件的导通及截止状态,在输出端获取所需航空电源,满足设计的品质要求。

1.1等效面积法的数学模型

采纳等效面积正弦波脉宽调制(SPWM)生成法,具有输出波形谐波量小,波形接近正弦波形而且算法简单等优势特点。

先把理想正弦波划分为若干等份,如图2所示,某一等份的弧线与时间轴形成的面积等同于某矩形脉宽,前提是矩形脉宽中点与弧线投影的中心点在时间轴上重合,且两者面积相等,划分的等份数量越大,整个矩形脉冲系列就越近似于设计所需的理想正弦波形,其中,矩形脉宽就是用于控制逆变器上元器件的导通、截止状态。

 

 

图1组合式逆变电路示意图

如第k个脉冲,其的正弦波形弧线垂直向下与时间轴形成的面积为SAk,与其等效的脉冲矩形面积为SRk,易得到公式:

 

 

式中:调制参数为M;理想正弦波被划分为N等份。

每等份的时间宽度为θk,每等份的时间轴中点为αmk,等效面积的矩形宽度(相当于导通时间)为θpk,等效面积的矩形前后两端剩余时间(相当于截止时间)宽度为θnk,计算公式分别是:

 

 

1.2设计计算及数据生成

设定一定数值后,通过上述等式和公式,利用数学工具Matlab软件进行数值计算,生成表1和脉冲数据。

表1脉冲系列数据

 

 

 

 

图2等效面积算法SPWM生成模型2软、硬件的设计与实现

2.1软件设计与实现

控制电路的硬件采用PLD元器件,并基于VHDL语言进行设计达成所需的逻辑功能,做到数字化控制。

整个系统主要由开关模块M_ONOFF、可控时钟分频器M_CLOCK、反馈调制模块M_MANDP、脉冲宽度数值存储器A、B、C:PW_ROM和脉冲发生器M_PWM等模块按一定逻辑对接而成,如图3所示形成了逆变控制逻辑电路的顶层设计文件M_TOP_SPWM,可实现等效面积正弦波脉宽调制法设计所需的脉冲波形系列,用来控制开关器件IGBT的导通和截止状态。

2.2逻辑电路的硬件编译与实现

逆变控制电路的顶层设计文件用VHDL语言编程描述成逻辑电路后,采用Max+PlusⅡ(Multiple ArrayMatriX Programmable Logic User SystemⅡ)为本实验的EDA设计软件,并在EDA实验开发系统(GW-GK系统)上完成仿真和硬件测试实验。首先选用ALTERA公司的EP1K50TC144-3芯片,然后如图4,图5所示对此芯片管脚进行输入输出定义、编译,通过ByteBlasterMV并行下载,打印机接口与目标板相连,完成芯片逻辑功能配置,最终在硬件上实现了控制系统电路逻辑功能。

3仿真结论与开发前景

顶层设计文件编译后进行实验仿真,结果如图6所示,其中脉冲系统S_A12、S_A34是单相全桥逆变器A的控制信号,S_B12、S_B34是单相全桥逆变器B的控制信号,S_C12、S_C34是单相全桥逆变器C的控制信号,显而易见三个单相全桥逆变器控制脉冲信号S_A、B、C生成相隔1/3周期,而且非常精确,完全满足实验设计所需的品质要求。

 

 

图3系统对接图

 

 

图4芯片引脚的锁定分配图

 

 

图5连接下载

采用VHDL硬件描述语言对硬件的功能进行编程,在实验室就能设计获得所需的控制逻辑电路,特点明显,具有传统实验方法根本无法实现的静态可重复编程和动态在系统重构的优势,这大大提升了航空电源控制系统设计的灵活性,实现了硬件的“软件化”。用可编程逻辑器件PLD芯片不但压缩了设计实验周期,减少误差,提高设计系统的精确度(如图6所示,可控制到3 ms以下),而且可以高度缩小控制系统的硬件规模,提高了集成度,降低了开发成本,有利于当前航空事业突飞猛进对电源的多样化需求开发,前景广阔。

 

 

图6实验功能仿真效果图

关键字:EDA技术  航空电源  逆变控制 编辑:探路者 引用地址:基于EDA技术的航空电源逆变控制电路设计

上一篇:基于MLX90316的磁性角度传感器的设计方案
下一篇:采用紧凑和高效率解决方案以无线方式给电池充电

推荐阅读最新更新时间:2023-10-12 22:42

三电平逆变器SVPWM控制算法研究
    目前,三电平逆变器是实现中高压、大容量电机调速的主要方式之一,与传统的两电平逆变器相比,其优点是能承受高电压、电压电流上升率低等。但是,由于其逆变状态比传统两电平多,加上前端三线整流所带来的中点电压波动,其控制算法的复杂程度也随之增大。电压空间矢量脉宽调制(SVPWM)本质上依赖于开关矢量的选择和开关矢量作用时间的计算,通过优化开关矢量,降低开关频率,从而减少了交流侧电流的总谐波畸变率,提高了母线电压利用率。 1 三电平逆变器主电路结构     三电平逆变器主电路结构主要是二极管中点箝位(NPC)式,如图1所示。       以电源中点为参考,每一相可以输出1、0和-1三种电平。以U相为例,其输出规律为:当S
[嵌入式]
采用双环控制的四桥臂三相逆变
1 引言   三相逆变器一般是采用三个桥臂组成的拓扑结构,为了给不对称负载供电,必须在输出端加入一个中点形成变压器(Neutral Formed Transformer, NFT),如图1 所示。中点形成变压器是变比为1的自耦变压器,工作频率为输出交流电的频率,体积和重量很大,而且体积和重量随着负载不对称的程度变化而变化,不对称度越大,NFT的体积重量也越大。 图1 带NFT的三相逆变器      为了省去中点形成变压器,减小逆变器的体积和重量,可以在图1所示的逆变器的基础上加入一个桥臂,将三相输出的公共点(即中点)通过电感Ln接在该桥臂中间,从而构成四桥臂三相逆变器,如图2 所示。 图2 四桥臂三相逆变器 2 逆变
[电源管理]
采用双环<font color='red'>控制</font>的四桥臂三相<font color='red'>逆变</font>器
基于单神经元PI控制逆变器系统仿真
    逆变器是将直流电能变换成交流电能的变流装置,供交流负载用电或与交流电网并网发电。随着光伏发电和太阳能发电等新兴能源的兴起,逆变器在生产和生活中显得日益重要。为了改善逆变器的输出特性,人们提出了并研究了多种控制算法。PID控制器以其简单、参数易于整定等特点而得到广泛的应用。但PID控制器依赖于精确的数学模型,且不具备在线调整PID参数的功能。单神经元具有一定的自学习和自适应能力,结合PID控制的优点可构成单神经元自适应PID控制器,这种控制算法对系统模型具有一定的自适应能力和较强的鲁棒性,但过渡时间较长。针对单神经元自适应PID控制器的特点和不足,根据误差的变化在线的调整对单神经元控制质量影响很大的比例系数K值。本文根据电源控
[嵌入式]
基于TMS320F2812的逆变电源控制器设计
在电力电子技术的应用及各种电源系统中,逆变电源技术均处于核心地位。逆变电源是一种采用开关方式的电能变换装置,它从交流或直流输入获得稳压、稳频的交流输出。近年来,现代逆变电源越来越趋向于高频化,高性能,模块化,数字化和智能化。 文中研制的逆变电源控制系统以 TMS320 F2812作为控制核心,它是一种支持实时仿真的32位微控制器,内部具有UART、SCI总线、SPI总线、PWM、定时器、ADC、CAN总线控制器等众多外围部件,功能强大。主要实现PWM产生、AD转换、DA转换、SCI、开关量检测、继电器驱动以及其他信号控制。 1 基于TMS320F2812逆变电源的总体设计 1.1 DSP控制器TMS320F2812性能 TMS32
[电源管理]
基于TMS320F2812的<font color='red'>逆变</font><font color='red'>电源</font><font color='red'>控制</font>器设计
数字化中频SPWM逆变电源控制系统
1 引言   中频逆变电源,是广泛应用于飞机、舰船、雷达、通信、导弹、车辆的标准供电系统,为了进一步提高了中频逆变电源的可靠性和静、动态性能,除在主电路上进行优化设计外,采用数字控制技术也被证明为有效的措施。新一代数字信号处理器TMS320LF240X系列既有高速的运算能力,高可靠性等一般DSP芯片的特点,还在片内集成了如A/D变换器,PWM发生器,脉冲死区发生器等外设电路,使其不仅可广泛应用于电机控制,还可应用于高频开关电源的控制。目前,数字控制已经在功率变换电路中得到了广泛的应用。, 本文将介绍采用TMS320F2407芯片的中频逆变电源数字控制系统,并给出了实验结果。  2 系统构成及控制原理 图1系统构成简化原理图
[电源管理]
光伏并网逆变控制与仿真设计
        为了达到提高光伏逆变器的容量和性能目的,采用并联型注入变换技术。根据逆变器结构以及光伏发电阵电流源输出的特点,选用工频隔离型光伏并网逆变器结构,并在仿真软件PSCAD中搭建光伏电池和逆变器模型,最后通过仿真与实验验证了理论的正确性和控制策略的可行性。   近年来,应用于可再生能源的并网变换技术在电力电子技术领域形成研究热点。并网变换器在太阳能光伏、风力发电等可再生能源分布式能源系统中具有广阔发展前景。太阳能、风能发电的重要应用模式是并网发电,并网逆变技术是太阳能光伏并网发电的关键技术。在光伏并网发电系统中所用到的逆变器主要基于以下技术特点:具有宽的直流输入范围;具有最大功率跟踪(MPPT)功能;并网逆变器输
[电源管理]
光伏并网<font color='red'>逆变</font>器<font color='red'>控制</font>与仿真设计
EDA技术在智能晶闸管触发电路中的应用
摘要:介绍了一种可编程控制数字移相晶闸管触发电路,使用FPGA(现场可编程门阵列)芯片,采用VHDL硬件描述语言编程。此电路具有相序自适应功能,稳定性好,适用于三相全控整流、调压场合。 关键词:电子设备自动化;晶闸管;数字移相触发;VHDL;相序自适 引言 移相触发器是控制晶闸管电力电子装置的一个重要部件,其性能的优劣直接关系到整个电力电子装置的性能指标,因而历来受到人们的重视。过去常用的模拟触发电路具有很多缺点,给调试和使用带来许多不便。近年来,数字移相触发技术发展极为迅速,出现了以单片机、专用微处理器以及可编程门阵列为核心的多种触发器集成电路。本文使用ALTERA公司的EPF10K10芯片,采用VHDL语言设计了一种以全数字移相
[电源管理]
后摩尔时代EDA技术需要什么?新思科技提出双引擎模式
8月27-28日,2020集微半导体峰在厦门海沧召开。本届峰会以“探寻·迭变时代新逻辑”为主题,旨在外部世界风云突变的市场环境下,探寻市场新的商业逻辑。 峰会期间,28日下午举办“国产突破与全球协作”为主题的EAD专场论坛。会上,新思科技中国区副总经理谢仲辉发表主题为《EDA开启IC设计双驱动模式》的演讲。 新思科技中国区副总经理谢仲辉 谢仲辉表示,在后摩尔定律的时代,芯片设计面临若干的挑战,其一是先进工艺投入带来的技术好处不像之前那样直接与线性;此外,在流片费用、芯片设计复杂度以及开发周期等挑战也大幅提高。 那么如何解决赋能后摩尔时代集成电路设计的需要呢?谢仲辉提
[半导体设计/制造]
后摩尔时代<font color='red'>EDA技术</font>需要什么?新思科技提出双引擎模式
小广播
最新电源管理文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved