基于GaAs工艺的可变增益功率放大器的应用设计

最新更新时间:2014-07-12来源: 21IC关键字:GaAs工艺  可变增益功率  放大器 手机看文章 扫描二维码
随时随地手机看文章

采用电路仿真ADS软件进行了原理图及版图仿真,研究了增益控制电路在放大器中的位置对性能的影响。最终实现了在6~9GHz频率范围内,1 dB压缩点输出功率大于33 dBm,当控制电压在-1~0 V之间变化时,放大器的增益在5~40dB之间变化,增益控制范围达到了35 dB.将功率放大器与增益控制电路制作在同一个单片集成电路上,面积仅为3.5 mm×2.3 mm,具有灵活易用、集成度高和成本低的特点,可广泛应用于卫星通信和数字微波通信等领域。

甚小口径终端(verysmall aperture terminal,VSAT)和数字微波通信(也称P2P通信)系统为商用微波无线信息传输系统,具有覆盖范围大、集成化程度高、对所有地点提供相同的业务种类和服容性好、扩容成本低、所需时间短、通信质量好和安装方便的特点。

功率放大器是微波无线信息传输系统的核心元器件,其性能直接影响发射机的作用半径、线性特性以及整个系统的效率,它通常是系统中成本最高的元器件。当代微波无线信息传输系统小型化的趋势越来越明显,这就要求元器件的集成度越来越高。

国外开展商用单片功率放大器研究较早,其中日本Eudyna公司的产品性能较佳,占领的市场份额最大,美国Hittite公司和Triquint公司也在近两年推出了相应的产品。中国在GaAs材料生长和器件研制方面也积极开展了相关的研究工作。

由于该功率放大器应用于商用领域,所以对其性能和成本都有较高的要求,本文通过电路设计,将常规功率放大器的功能进行扩展,增加增益控制功能,能够在实现系统小型化的同时,降低成本,同时,不会影响功率放大器的输出功率和效率等相关指标。

本文研制的多功能功率放大器单片集成电路的面积与同样指标的功率放大器面积一样,约为8 mm2,传统室外单元的电压控制可变衰减器(voltage variable attenuator,VVA)的面积约为1.7 mm2,可见文中的多功能功率放大器将芯片面积节省了17.5%,有利于系统的小型化和成本的降低。

1 增益控制电路的设计原理

增益控制电路的作用是通过改变控制电压,达到改变放大器增益的目的。增益控制电路在放大器中的位置至关重要,若放置于放大器的末级,会由于自身的损耗而影响输出功率,放置于中间,会使放大器的中间级因无法将末级推饱和,从而影响效率。通过以上分析,将增益控制电路放置于放大器的第一级。

增益控制电路的原理如图1所示,由两个场效应晶体管(field effect transistor,FET)组成,FET1的漏极与FET2的源极连接在一起,射频信号从FET1的栅极输入,从FET2的漏极输出。图1中:Vc为控制电压;Vgs为栅压;Vdd为漏压;V1表示两个FET连接点的电压;Ids为FET1和FET2的漏极到源极的电流,图1中FET1的源极和FET2的漏极连接于同一节点,所以Ids同时流经FET1和FET2.该电路通过改变Vc的电压值来改变增益。

 

 

图1 增益控制电路拓扑图

FET工作在饱和区时的跨导gm,Ids与Vgs的关系如图2所示。FET1的栅压Vgs保持不变,则源漏电阻值的变化不会很大,在工作点的阻抗约为10Ω,由欧姆定律可知,V1的电压值由Ids决定。FET2的漏压Vds保持不变,Vc变化时,FET2的栅压相应变化,由图2的曲线可以看出,当栅压变化时,gm会产生变化,FET2的放大倍数则相应改变。同时,FET2的栅压变化时,根据图3,Ids会有较大的变化。根据之前的分析,Ids变化时,V1的值也会相应产生较大的变化,当V1小于1V时,FET1工作在图3中的线性区,增益受漏压影响较大,所以当V1变化时,FET1的放大倍数也会相应变化。这样,FET1和FET2的增益都受Vc的控制,其共同的增益变化量成为功率放大器的增益变化范围。

 

 

图2 gm,Ids与Vgs的关系曲线

 

 

图3 Vds,Vgs与Ids的关系曲线

2 功率放大器的设计原理

本文选用中国电子科技集团公司第十三研究所GaAs PHEMT 工艺线的模型进行功率放大器的设计,GaAs PHEMT 场效应管总栅宽1mm的输出功率为0.6 W,若需要输出33 dBm,即2W 功率,末级总栅宽需4mm,使用4个功率单元,每个单元总栅宽1 mm.要得到高效率的功率放大器,需要仔细考虑每一级场效应管的总栅宽比,可以达到最大效率。

根据设计目标确定相应的电路拓扑结构,拓扑结构的选择决定着整个电路的性能,对有源器件进行负载牵引,找出有源器件能够输出最大功率时的输入和输出阻抗在阻抗圆图上的位置。本文所用1 mm栅宽模型如图4 所示,图4(a)为模型版图形,用于进行器件建模,图4(b)为通过测量参数拟合的大信号模型。输出匹配网络的设计着眼于最大的功率输出,拓扑结构如图5所示。

 

图4 1 mm栅宽器件模型

 

 

图5 功率放大器拓扑结构

3 CAD设计仿真与测试结果

按照图1和图5的拓扑结构,使用ADS仿真工具结合GaAs PHEMT工艺模型,对电路进行设计和优化。

利用ADS对功率放大器单片集成电路的无源元件进行结构设计和优化,调整电容、带线等匹配元件的尺寸,对电路的工作频带、增益、驻波、输出功率和效率等参数进行优化,利用ADS中的谐波平衡仿真软件进行大信号仿真,并对版图进行电磁场仿真。ADS仿真包括原理图仿真和版图仿真,在原理图仿真中,取得电路各个元件的初值,并按照设计目标进行优化,但是原理图仿真只考虑了有源器件、金属带线等器件的独立测试模型,并未考虑版图中器件之间的相互耦合,得到的元件值与实际情况是有差距的。为了精简单片集成电路面积,器件间距接近单倍线距,必须考虑线间耦合对放大器性能的影响,因此,使用2.5D版图仿真工具MOMENTUM,采用矩量法对电路的线间耦合及层间耦合进行了电磁场仿真。

 

 

图6 功率放大器的仿真及测试结果

图6中的虚线是经过优化之后的放大器版图电磁场仿真结果,实线为测试结果。由图中可知增益控制范围为35 dB,1 dB压缩点输出功率Po(1 dB)在频带内都大于33 dBm,功率附加效率ηPAE大于30%.本文设计的带增益控制功能的功率放大器单片集成电路采用GaAs工艺进行流片验证,并进行载体测试,单片集成电路的安装采用装架和键合工艺,安装完成的载体如图7所示。分析仿真和实测结果,增益变化曲线在Vc为0,-0.2,-0.4和-0.6V吻合得较好,在Vc为-0.8V和-1V时有一定的偏差,实测的增益比仿真要低2~4dB,原因可能是当FET的栅压偏置在-0.8V和-1V时,比较接近夹断区,模型跨导的拟合准确性较差,实际该偏置下的跨导比模型的拟合值要低。1dB压缩点输出功率和功率附加效率的实测曲线和仿真曲线吻合得较好,该两项指标都是在Vc=-0.6V时进行测试的,此时放大器工作在饱和区,模型拟合值在该区域比较接近实际值,所以该两项指标与仿真结果吻合得较好。

 

 

图7 载体安装完成图

4 结论

本文分析了增益控制电路原理、增益控制对功率放大器指标的影响;使用电磁场仿真工具,在保证电路性能基础上精简版图面积,极大地降低了单片集成电路成本;通过流片和测试,验证了单片集成电路设计方法和思路的正确性和可行性;在不增加功率放大器单片集成电路面积和降低性能的情况下加入了增益控制功能,降低了成本,在卫星通信和数字微波通信等领域具有广泛的应用前景。本文采用目前制作微波单片集成电路成熟的GaAs赝高电子迁移率晶体管( pseudomorphic high electron mobility transistor,PHEMT)工艺进行多功能功率放大器的研制,其工艺稳定,成品率高,在缩短研发周期和降低成本方面具有不可替代的地位。

关键字:GaAs工艺  可变增益功率  放大器 编辑:探路者 引用地址:基于GaAs工艺的可变增益功率放大器的应用设计

上一篇:模拟工程师的困扰:晶振匹配和温度漂移
下一篇:基于电流输出电路技术的多款实用电路案例

推荐阅读最新更新时间:2023-10-12 22:42

为ADC添加一个带噪声滤波器的数控PGA
引言 在一些应用中,需要对高动态范围的信号进行数字化。一种常见的数字化方法是在模数转换器(ADC)前面添加一个外部可编程增益放大器(PGA)。只有一少部分微控制器拥有内部PGA。但是,现在的一些PGA均以一个或者多个输入通道单芯片的方式出售。这类PGA增加了系统的成本,并且由于是一种固定增益解决方案,它通常会消耗更多的功率。 本文为您介绍如何利用一个单可重置积分电路来实现PGA,这种方法的好处是: 解决方案成本低且易于设计。 可以数字方式控制和校正增益。 使用低通滤波器减少信号噪声,其在高噪声的微控制器环境且用于小型模拟信号时特别有用。截止频率随选定采样速率自动调节。 可以外部控制零电位电压基准。单电源
[模拟电子]
为ADC添加一个带噪声滤波器的数控PGA
为MAX13330/MAX13331汽车耳机放大器添加插孔检测
汽车 耳机放大器 MAX13330/MAX13331满足绝大多数汽车应用的要求,但本文介绍了一个需要补充的功能,有些情况下系统需要检测耳机是否插入音频插孔。该功能可以简单地增加到任何DirectDrive耳机放大器,只要微控制器能够区分这个附加信号。 插孔检测电路 在设备上增加插孔检测电路通常只需几个低成本的无源元件,每个无源元件的标称值根据系统要求进行调整,但基本电路相同。目前,四触点音频插孔比较通用,额外的触点为常闭开关,连接到左声道或右声道音频触点,当插头插入时,这个触点打开。图1给出了基本的插头检测电路,图2所示原理图是增加了插孔检测功能的MAX13330/MAX13331的基本电路。 这个插孔检测电路可
[模拟电子]
为MAX13330/MAX13331汽车耳机<font color='red'>放大器</font>添加插孔检测
ADI推出高功效、零漂移仪表放大器AD8237
北京2012年8月15日电 /美通社亚洲/ -- Analog Devices, Inc. (NASDAQ: ADI),全球领先的高性能信号处理解决方案供应商最近推出微功耗、零漂移精确度仪表放大器 AD8237,以具有竞争力的价格为精密信号及传感器调理提供一个高功效解决方案。AD8237具有低输入失调漂移( 0.3uV/摄氏度)和业界领先的输入信号范围,比供电轨高出300 mV。该器件的最大增益误差和漂移分别为0.005%和0.5 ppm/摄氏度,CMRR(共模抑制比)为114 dB,即便在低增益的情况下也能提供无可比拟的精确测量。放大器的静态电源电流仅略高于100 uA,非常适合桥式信号调理、温度传感器以及其它在低功耗设计中使用
[模拟电子]
ADI推出2-50 GHz分布式功率放大器
全球领先的高性能信号处理解决方案供应商,近日推出HMC1127和HMC1126 MMIC(单芯片微波集成电路)分布式功率放大器。 这些新型功率放大器裸片涵盖2-50 GHz的频率范围,可简化系统设计并提高性能,频段之间无需射频开关。 各放大器I/O内部匹配50 阻抗,方便轻松集成到多芯片模块中。 所有数据均由芯片获取,芯片通过长0.31 mm (12 mil)的两条0.02 mm (1 mil)线焊连接。 HMC1126和HMC1127基于GaAs(砷化镓)pHEMT(赝晶型高电子迁移率晶体管)设计,非常适合仪器仪表、微波无线电与VSAT天线、航空航天与防务系统、电信基础设施以及光纤应用。 下载
[网络通信]
ADI推出2-50 GHz分布式<font color='red'>功率</font><font color='red'>放大器</font>
电流型仪表放大器提升压电加速度计性能
电路抑制由压电传感器及其电缆产生的容性耦合噪声。 一个典型的压电传感器由表面上金属化电极的PZT-5A陶瓷材料组成。在电极处使用导电环氧将传感器连接到外部电缆。绝缘胶粘合装置元件到待测结构上,使传感器与接地参考电位隔离。压电片面向预期加速度的方向。当安放在目标结构上时,压电片成为简单的压力传感器和加速度计,产生正比于压力且平行于压电片极化方向的电压。压电片容性阻抗在低频时呈现很大的电抗,使压电片和电缆易受周围电气设备和电源线的干扰。传感器远距离安放时,需要使用屏蔽的互连电缆,但即使屏蔽,对去除共模信号也不是完全有效,因为压电片的导电表面仍会获取噪声。 提取传感器信号的一个方法是使用仪表放大器,它只放大传感器所产生的电位
[模拟电子]
G/H类音频放大器:如何实现高音质和低功耗
在传统的高保真系统中, 音频放大器 技术规格总是强调音质的好坏,对功率损耗的程度却很少考虑。然而,随着音频行业便携式高保真领域的增长,传统放大器器件的缺点,特别是它的低效率,已成为当前亟需解决的问题。   传统上,音频播放设备采用所谓的AB类放大器,此类放大器失真小,从而产生较高的音质。然而,AB类放大器的运行方式解释了其效率低的原因:放大器内部电压会随着输出电压降低而降低。放大器的晶体管会消耗过多的电力,因此,随着输出扬声器功率的下降,系统的效率便会降低。   对于电源供电的高保真设备来说,这不是太大的问题;但对于电池供电的音频设备,如手机和MP3播放器而言,这是一个相当大的困扰,因为音频放大器的耗电量在整个系统中占
[模拟电子]
G/H类音频<font color='red'>放大器</font>:如何实现高音质和低功耗
可程控核能谱信号放大器原理分析
引言   核能谱放大器是能谱测量系统的重要组成部分,其性能直接影响整个能谱测量系统的分辨率。本文对传统的核能谱信号放大器的不足之处进行了改进。设计研制一种通用的、放大倍数可程控的核能谱信号放大器,使其能同时适用于X荧光仪,伽玛谱仪等核能谱测量仪器,具有通用性。该放大器如进一步融合信号采集(A/D转换)技术和数字信号处理(DSP)技术可构成一个功能完备的核能谱信号处理系统。   1 电路基本组成   该电路主要包括滤波成形,程控放大,基线消除等三部分。其中滤波成形电路包括极零相消,四级巴特沃斯滤波电路,极性选择电路;程控放大电路包括一级20倍放大和12位DAC程控放大电路;基线消除电路包括去除直流电路,反相电路及电
[模拟电子]
可程控核能谱信号<font color='red'>放大器</font>原理分析
动态范围压缩,得到绝佳音质的好选择?
如果谈资论辈,似乎再也没有像“动态范围压缩”这样堂而皇之地人为制造失真,反而受到好评的例子了!当然,除非你是狂热的音响“发烧友”,对声音质量绝不妥协。    更多的时候,你会权衡面积、器件成本、设计成本等因素,转而对动态范围压缩抛出橄榄枝。而TI首款具有动态范围压缩功能的立体声D类放大器的推出似乎也是情理之中的事情。    平常我们所说的动态范围是最强声音与最弱声音的强度差,单位用“db” 表示(即20Log10(P/Po))。一般语言的动态范围为20—40db,歌曲与音乐的动态范围为40—60db,交响乐的动态范围为70—120db。音频放大器的动态范围必须大于语言、音乐的动态范围。    “想唱就唱,唱的响亮”一下子红遍了大江南
[嵌入式]
小广播
最新电源管理文章
换一换 更多 相关热搜器件
随便看看
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved