随着电子电力器件设计技术的不断发展,逆变器被广泛的应用在各种设计当中,其中串联谐振全桥逆变器被使用的频率更是频繁。本篇文正就针对串联谐振半桥变压器当中的脉冲密度、脉冲频率等脉冲控制方法进行了比较分析和讨论,其中尤其对频率调频与脉宽进行了着重的分析。
基本结构分析
串联谐振逆变器的基本原理图如图1所示。它包括直流电压源,和由开关S1~S4组成的逆变桥及由R、L、C组成的串联谐振负载。其中开关S1~S4可选用IGBT、SIT、MOSFET、SITH等具有自关断能力的电力半导体器件。逆变器为单相全桥电路,其控制方法是同一桥臂的两个开关管的驱动信号是互补的,斜对角的两个开关是同时开通与关断的。
串联谐振逆变器的控制方法
调幅控制(PAM)方法
调幅控制的方法并非一种,我们可以采用调节直流电压源输出(逆变器输入)电压Ud(可以用移相调压电路的方法,也可以用斩波调压电路加电感和电容组成的滤波电路,来实现调节输出功率的目的。即逆变器的输出功率通过输入电压调节,由锁相环(PLL)完成电流和电压之间的相位控制,以保证较大的功率因数输出。这种方法的优点是控制简单易行,缺点是电路结构复杂,体积较大。
脉冲频率调制(PFM)方法
脉冲频率调制方法是通过改变逆变器的工作频率,从而改变负载输出阻抗以达到调节输出功率的目的。
从串联谐振负载的阻抗特性
可知,串联谐振负载的阻抗随着逆变器的工作频率(f)的变化而变化。对于一个恒定的输出电压,当工作频率与负载谐振频率偏差越大时,输出阻抗就越高,因此输出功率就越小,反之亦然。脉冲频率调制方法的主要缺点是工作频率在功率调节过程中不断变化,导致集肤深度也随之而改变,在某些应用场合如表面淬火等,集肤深度的变化对热处理效果会产生较大的影响,这在要求严格的应用场合中是不允许的。但是由于脉冲频率调制方法实现起来非常简单,故在以下情况中可以考虑使用它:
1)如果负载对工作频率范围没有严格限制,这时频率必须跟踪,但相位差可以存在而不处于谐振工作状态。
2)如果负载的Q值较高,或者功率调节范围不是很大,则较小的频率偏差就可以达到调功的要求。
脉冲密度调制(PDM)方法
脉冲密度调制方法就是通过控制脉冲密度,实际上就是控制向负载馈送能量的时间来控制输出功率。其控制原理如图2所示。
这种控制方法的基本思路是:假设总共有N个调功单位,在其中M个调功单位里逆变器向负载输出功率;而剩下的N-M个单位内逆变器停止工作,负载能量以自然振荡形式逐渐衰减。输出的脉冲密度为M/N,这样输出功率就跟脉冲密度联系起来了。因此通过改变脉冲密度就可改变输出功率。
脉冲密度调制方法的主要优点是:输出频率基本不变,开关损耗相对较小,易于实现数字化控制,比较适合于开环工作场合。
脉冲密度调制方法的主要缺点是:逆变器输出功率的频率不完全等于负载的自然谐振频率,在需要功率闭环的场合中,工作稳定性较差。由于每次从自然衰减振荡状态恢复到输出功率状态时要重新锁定工作频率,这时系统可能会失控。因此在功率闭环或者温度闭环的场合,工作的稳定性不好。其另一个缺点就是功率调节特性不理想,呈有级调功方式。
谐振脉冲宽度调制(PWM)方法
在图3中,谐振脉冲宽度调制是通过改变两对开关管的驱动信号之间的相位差来改变输出电压值以达到调节功率的目的。即在控制电路中使原来同相的两个桥臂开关(S1,S2)、(S3,S4)的驱动信号之间错开一个相位角,使得输出的正负交替电压之间插入一个零电压值,这样只要改变相位角就可以改变输出电压的有效值,最终达到调节输出功率的目的。
这种控制方法的优点是电源始终工作在谐振状态,功率因数高。但存在反并联二极管的反向恢复问题、小负载问题、软开关实现问题。脉宽加频率调制方法
针对上述控制方法的优缺点,一些复合型控制方法的研究日益引起重视,脉宽加频率调制方法就是一种较好的控制方法。
在一般的逆变器中,常用的移相PWM方法的工作频率是固定的,不需考虑负载在不同工作频率下的特性。而在串联谐振感应加热电源中使用移相PWM方法时,则要求其工作频率必须始终跟踪负载的谐振频率,通常使某一桥臂的驱动脉冲信号与输出电流的相位保持一致,而另外一个桥臂的驱动脉冲信号与输出电流的相位则可以调节。图4和图5中,S1和S4驱动信号互补,S2和S3驱动脉冲信号互补,S1驱动信号相位与负载电流的相位保持相同,而S3的驱动脉冲与S1的驱动脉冲信号之间的相位差β在0°~180°范围内可调,调节β就可以调节输出电压的占空比,即调节输出功率。
根据输出电压和输出电流的不同相位关系,有2种PWM调节方式:升频式PWM和降频式PWM。
升频式
在图4中,为保证滞后臂(S1,S4)触发信号前沿同电流信号同相,角频率须根据移相角β的大小改变。即在通过调节移相角β调节功率的同时改变频率f。在β调节过程中,在增大输出脉冲宽度的同时,将引起输出电压相对于输出电流的相位不断减小并滞后于输出电流,这说明输出频率也在不断升高,因此称这种调制方式为升频式PWM。这时S1、S4管各导通180°,已经实现ZCS。超前臂S2,S3在大电流下开通,D2,D3在大电流下关断因而有反向恢服。通过在S2、S3臂上串联电感也可实现ZCS。,这种方法适用于有关断尾部电流、关断损耗占主导的双极型器件,如IGBT,SIT,MCT等。同时应注意电路布局减小分布电感,以减小二极管反向恢复带来的电压尖峰。角频率为
降频式
在图5中,调节β在增大输出脉冲宽度的同时,将引起输出电压相对于输出电流的相位不断减小,使相位差减小,这说明输出频率在不断降低,因此称这种方式为降频式PWM。在这种方式下,二极管D2,D3均自然过零关断,D1,D4不导通,没有二极管反向恢复所带来的问题。S1、S4在零电流下开关(ZCS),S2、S3在大电流下关断。通过在S2、S3上并联电容即可实现ZVS。这种方法适和高频电源和内建反并联二极管反向恢复问题比较严重的器件,如MOSFET等。可避免二极管反向恢复所带来的电流尖峰和器件的损耗增加。
为保证超前臂触发信号前沿同电流信号同相,角频率为
由以上分析可知,无论是升频式PWM,还是降频式PWM,两者有一个共同的特点,即在调节输出电压脉宽的同时,也改变了负载的工作频率。故称之为脉宽加频率调制方法。
结语
此篇文章主要对脉宽以及频率的调制进行详细的分析,并且给出了一些常用的串联谐振单相全桥逆变器功率和频率的控制方式。这使得工程师们能够以负载为基准来选择在不同场合适用的控制方法。
上一篇:透彻分析利用TL494组成的逆变器电路
下一篇:如何利用LLC谐振电路改进光伏并网逆变器
推荐阅读最新更新时间:2023-10-12 22:43
Vishay线上图书馆
- 选型-汽车级表面贴装和通孔超快整流器
- 你知道吗?DC-LINK电容在高湿条件下具有高度稳定性
- microBUCK和microBRICK直流/直流稳压器解决方案
- SOP-4小型封装光伏MOSFET驱动器VOMDA1271
- 使用薄膜、大功率、背接触式电阻的优势
- SQJQ140E车规级N沟道40V MOSFET
- MathWorks 和 NXP 合作推出用于电池管理系统的 Model-Based Design Toolbox
- 意法半导体先进的电隔离栅极驱动器 STGAP3S为 IGBT 和 SiC MOSFET 提供灵活的保护功能
- 全新无隔膜固态锂电池技术问世:正负极距离小于0.000001米
- 东芝推出具有低导通电阻和高可靠性的适用于车载牵引逆变器的最新款1200 V SiC MOSFET
- 【“源”察秋毫系列】 下一代半导体氧化镓器件光电探测器应用与测试
- 采用自主设计封装,绝缘电阻显著提高!ROHM开发出更高电压xEV系统的SiC肖特基势垒二极管
- 艾迈斯欧司朗发布OSCONIQ® C 3030 LED:打造未来户外及体育场照明新标杆
- 氮化镓取代碳化硅?PI颠覆式1700V InnoMux2先来打个样
- 从隔离到三代半:一文看懂纳芯微的栅极驱动IC