谐振单相全桥逆变器控制方法如何确定?

最新更新时间:2014-07-27来源: 电源网关键字:全桥逆变器  控制方法 手机看文章 扫描二维码
随时随地手机看文章

随着电子电力器件设计技术的不断发展,逆变器被广泛的应用在各种设计当中,其中串联谐振全桥逆变器被使用的频率更是频繁。本篇文正就针对串联谐振半桥变压器当中的脉冲密度、脉冲频率等脉冲控制方法进行了比较分析和讨论,其中尤其对频率调频与脉宽进行了着重的分析。

基本结构分析

串联谐振逆变器的基本原理图如图1所示。它包括直流电压源,和由开关S1~S4组成的逆变桥及由R、L、C组成的串联谐振负载。其中开关S1~S4可选用IGBT、SIT、MOSFET、SITH等具有自关断能力的电力半导体器件。逆变器为单相全桥电路,其控制方法是同一桥臂的两个开关管的驱动信号是互补的,斜对角的两个开关是同时开通与关断的。

串联谐振逆变器的控制方法

调幅控制(PAM)方法

调幅控制的方法并非一种,我们可以采用调节直流电压源输出(逆变器输入)电压Ud(可以用移相调压电路的方法,也可以用斩波调压电路加电感和电容组成的滤波电路,来实现调节输出功率的目的。即逆变器的输出功率通过输入电压调节,由锁相环(PLL)完成电流和电压之间的相位控制,以保证较大的功率因数输出。这种方法的优点是控制简单易行,缺点是电路结构复杂,体积较大。

脉冲频率调制(PFM)方法

脉冲频率调制方法是通过改变逆变器的工作频率,从而改变负载输出阻抗以达到调节输出功率的目的。

从串联谐振负载的阻抗特性

可知,串联谐振负载的阻抗随着逆变器的工作频率(f)的变化而变化。对于一个恒定的输出电压,当工作频率与负载谐振频率偏差越大时,输出阻抗就越高,因此输出功率就越小,反之亦然。脉冲频率调制方法的主要缺点是工作频率在功率调节过程中不断变化,导致集肤深度也随之而改变,在某些应用场合如表面淬火等,集肤深度的变化对热处理效果会产生较大的影响,这在要求严格的应用场合中是不允许的。但是由于脉冲频率调制方法实现起来非常简单,故在以下情况中可以考虑使用它:

1)如果负载对工作频率范围没有严格限制,这时频率必须跟踪,但相位差可以存在而不处于谐振工作状态。

2)如果负载的Q值较高,或者功率调节范围不是很大,则较小的频率偏差就可以达到调功的要求。

脉冲密度调制(PDM)方法

脉冲密度调制方法就是通过控制脉冲密度,实际上就是控制向负载馈送能量的时间来控制输出功率。其控制原理如图2所示。

这种控制方法的基本思路是:假设总共有N个调功单位,在其中M个调功单位里逆变器向负载输出功率;而剩下的N-M个单位内逆变器停止工作,负载能量以自然振荡形式逐渐衰减。输出的脉冲密度为M/N,这样输出功率就跟脉冲密度联系起来了。因此通过改变脉冲密度就可改变输出功率。

脉冲密度调制方法的主要优点是:输出频率基本不变,开关损耗相对较小,易于实现数字化控制,比较适合于开环工作场合。

脉冲密度调制方法的主要缺点是:逆变器输出功率的频率不完全等于负载的自然谐振频率,在需要功率闭环的场合中,工作稳定性较差。由于每次从自然衰减振荡状态恢复到输出功率状态时要重新锁定工作频率,这时系统可能会失控。因此在功率闭环或者温度闭环的场合,工作的稳定性不好。其另一个缺点就是功率调节特性不理想,呈有级调功方式。

谐振脉冲宽度调制(PWM)方法

在图3中,谐振脉冲宽度调制是通过改变两对开关管的驱动信号之间的相位差来改变输出电压值以达到调节功率的目的。即在控制电路中使原来同相的两个桥臂开关(S1,S2)、(S3,S4)的驱动信号之间错开一个相位角,使得输出的正负交替电压之间插入一个零电压值,这样只要改变相位角就可以改变输出电压的有效值,最终达到调节输出功率的目的。

这种控制方法的优点是电源始终工作在谐振状态,功率因数高。但存在反并联二极管的反向恢复问题、小负载问题、软开关实现问题。脉宽加频率调制方法

针对上述控制方法的优缺点,一些复合型控制方法的研究日益引起重视,脉宽加频率调制方法就是一种较好的控制方法。

在一般的逆变器中,常用的移相PWM方法的工作频率是固定的,不需考虑负载在不同工作频率下的特性。而在串联谐振感应加热电源中使用移相PWM方法时,则要求其工作频率必须始终跟踪负载的谐振频率,通常使某一桥臂的驱动脉冲信号与输出电流的相位保持一致,而另外一个桥臂的驱动脉冲信号与输出电流的相位则可以调节。图4和图5中,S1和S4驱动信号互补,S2和S3驱动脉冲信号互补,S1驱动信号相位与负载电流的相位保持相同,而S3的驱动脉冲与S1的驱动脉冲信号之间的相位差β在0°~180°范围内可调,调节β就可以调节输出电压的占空比,即调节输出功率。

根据输出电压和输出电流的不同相位关系,有2种PWM调节方式:升频式PWM和降频式PWM。

升频式

在图4中,为保证滞后臂(S1,S4)触发信号前沿同电流信号同相,角频率须根据移相角β的大小改变。即在通过调节移相角β调节功率的同时改变频率f。在β调节过程中,在增大输出脉冲宽度的同时,将引起输出电压相对于输出电流的相位不断减小并滞后于输出电流,这说明输出频率也在不断升高,因此称这种调制方式为升频式PWM。这时S1、S4管各导通180°,已经实现ZCS。超前臂S2,S3在大电流下开通,D2,D3在大电流下关断因而有反向恢服。通过在S2、S3臂上串联电感也可实现ZCS。,这种方法适用于有关断尾部电流、关断损耗占主导的双极型器件,如IGBT,SIT,MCT等。同时应注意电路布局减小分布电感,以减小二极管反向恢复带来的电压尖峰。角频率为

降频式

在图5中,调节β在增大输出脉冲宽度的同时,将引起输出电压相对于输出电流的相位不断减小,使相位差减小,这说明输出频率在不断降低,因此称这种方式为降频式PWM。在这种方式下,二极管D2,D3均自然过零关断,D1,D4不导通,没有二极管反向恢复所带来的问题。S1、S4在零电流下开关(ZCS),S2、S3在大电流下关断。通过在S2、S3上并联电容即可实现ZVS。这种方法适和高频电源和内建反并联二极管反向恢复问题比较严重的器件,如MOSFET等。可避免二极管反向恢复所带来的电流尖峰和器件的损耗增加。

为保证超前臂触发信号前沿同电流信号同相,角频率为

由以上分析可知,无论是升频式PWM,还是降频式PWM,两者有一个共同的特点,即在调节输出电压脉宽的同时,也改变了负载的工作频率。故称之为脉宽加频率调制方法。

结语

此篇文章主要对脉宽以及频率的调制进行详细的分析,并且给出了一些常用的串联谐振单相全桥逆变器功率和频率的控制方式。这使得工程师们能够以负载为基准来选择在不同场合适用的控制方法。

关键字:全桥逆变器  控制方法 编辑:探路者 引用地址:谐振单相全桥逆变器控制方法如何确定?

上一篇:透彻分析利用TL494组成的逆变器电路
下一篇:如何利用LLC谐振电路改进光伏并网逆变器

推荐阅读最新更新时间:2023-10-12 22:43

ARM编程进阶之三 —— 裸机硬件的控制方法与例程
到目前为止,我们已经能够编写较复杂的ARM汇编程序了,遗憾的是这些程序是运行在ads自带的虚拟开发板ARMUL下的,(在axd界面下,单击options- configure target,可见到如下的目标板配置界面) 而我们最终的目的是要让程序运行在实际的硬件产品上,并能控制硬件。本文将初步介绍如何建立真实硬件的开发和调试环境,编写控制硬件的程序的方法。 第一部分内容:如何建立真实硬件的开发和调试环境 由于基于ARM的嵌入式开发板种类众多,硬件仿真器、调试代理软件也是种类繁多,使用方法各异,这就为学习编写ARM裸机程序控制硬件带来了较大的难度。为便于初学者快速入门,有必要选择一套成熟、易于学习和实践的软硬件环境。经过比较,
[单片机]
ARM编程进阶之三 —— 裸机硬件的<font color='red'>控制方法</font>与例程
一种新型矩阵式高频链逆变器控制方法
0 引言     DC/AC逆变技术在新能源开发、交流电机的传动、不间断电源(UPS)、有源滤波器等许多场合得到了广泛的应用。传统的逆变器虽然技术成熟可靠,但存在体积大、笨重、音频噪音大、系统动态性能差等缺点。变压器作为逆变器中的核心元件,在实现电源侧和负载侧电气隔离的同时,也起到传输功率的作用。然而由于传输功率的是基波,使得逆变器中采用的传统工频变压器体积、重量在装置所占分量较大,成为提高装置功率密度的主要障碍。高频链逆变技术利用高频变压器代替传统的工频变压器,克服了以上缺点,减小了变压器的体积和重量。     本文将矩阵变换器中的直流变换到三相交流的拓扑和高频链技术相结合,提出了一种新型控制策略。该控制策略利用工作于PWM调制
[嵌入式]
电压波动和闪变的检测与控制方法
由冲击性功率负荷引起的电压波动与闪变是电能质量问题的重要方面之一。本文论述了电压波动和闪变的常用检测方法,比较分析了几种改善电压波动和闪变补偿装置的性能特点,为电力系统电压波动与闪变的监测及抑制提供参考。 关键词:电压波动;闪变;检测;抑制;电能质量 Detection and Suppression Methods for Voltage Fluctuation and Flicker GUO Shang-hua, HUANG Chun,WANG Lei,CAO Guo-jian (College of Electricity & Information Engineering of Hunan Universi
[工业控制]
电压波动和闪变的检测与<font color='red'>控制方法</font>
步进电机升降速曲线控制方法
    在一些控制简单或要求低成本的运动控制系统中,经常用步进电机做执行元件。步进电机在这种应用场合下最大的优势是:可以开环方式控制而无需反馈就能对位置和速度进行控制。但也正是因为负载位置对控制电路没有反馈,步进电机就必须正确响应每次励磁变化。如果励磁频率选择不当,电机不能够移到新的位置,那么实际的负载位置相对控制器所期待的位置出现永久误差,即发生失步现象或过冲现象。因此步进电机开环控制系统中,如何防止失步和过冲是开环控制系统能否正常运行的关键。      失步和过冲现象分别出现在步进电机启动和停止的时候。一般情况下,系统的极限启动频率比较低,而要求的运行速度往往比较高。如果系统以要求的运行速度直接启动,因为该速度已超过极限启动频
[嵌入式]
全桥逆变器
  全桥式逆变器是全桥式(Full Bridge)PWM DC/DC转换器的主要组成部分,其主电路如图1所示,它是由四只开关管V1~v2,及其反并联二极管D1~d4,和输出变压器Tr,等组成的。输人直流电源电压为Ui,输出交流电压为U。,变压器Tr,的初级绕组接于两桥臂中点A和B两点,变压器的初级绕组匝数为w1,次级绕组匝数为W2,变比Κ=W1/W2。全桥式逆变器可以采用双极性控制、有限双极性控制和移相控制方式。
[电源管理]
开关电源多路输出技术的控制方法
   引言   多路输出技术中一个重要性能指标就是负载交叉调整率的问题,我们通常采用变压器副边多个绕组的方法来实现多路输出。但是这种方法一般只采样一路主输出进行反馈调节控制,因此交叉调整性能较差。改善多路输出开关 电源 交叉调整率的方法可分为无源和有源两类。本文首先介绍了几种传统的多路输出技术,并对其进行了简单的分析和总结。重点介绍了两种新的多路输出技术:恒流源实现多路输出和PWM—PD多路输出技术。结合典型拓扑探讨了PWM—PD技术的应用前景。    传统的多路输出方法   1)无源调节   无源调节通过在次级增加一些简单的无源器件可以使负载交叉调整率得到一定的改善。无源调节包括耦合电感调节控制和加权电压反馈调节控制两种,如
[电源管理]
开关电源多路输出技术的<font color='red'>控制方法</font>
直流无刷电机及其控制方法在光伏水泵系统中的应用
0    引言     近年来,随着电力电子器件及控制理论的迅速发展,永磁直流无刷电机以其高效性,良好的调速性,易于维护性而得到了广泛的应用。传统的永磁直流无刷电机往往采用位置传感器来确定转子的位置,这不仅增大了电机的安装体积,增加了成本,而且降低了电机的可靠性。目前,无传感器直流无刷电机一般采用三段式起动方式,起动转矩在开始起动时比较小,并且有脉动,对于有起动转矩要求的系统存在着局限性,而在中小型太阳能光伏水泵系统中,负载转矩是随着转速的增加而增加的,不计摩擦力,在静止时负载转矩为零,所以,直流无刷电机可以应用于光伏水泵系统,并且整个系统是直流的,无须逆变,那么,在光伏水泵系统中应用直流无刷电机,对于提高系统效率,简化系统装
[嵌入式]
吹膜机温度指标及控制方法
根据塑料的熔融理论, 吹塑 薄膜的 挤出机 螺杆共分三段:加料段、熔融段、均化段。在加料段末端,进入熔融段开始时,根据熔融理论,它的温度应是粘流温度。各种吹膜树脂粘流温度分别为PP:164-175摄氏度,PE:105-135摄氏度,PA:195-210摄氏度。 在加料段入口,希望温度低一些,防止树脂粘流堵死进料口,另外,在加料段树脂不断压缩,空气要倒着从加料口排出。根据设备构造不同,加料口虽不进行电加热,但是通过机筒传热,加料口温度约为50-90度。这样,加料段温度就确定了。入口处50-90度,末端等于熔点或粘流温度,在该段上可以定为温度等比线形升温。 熔融段开始时,温度达到粘流温度才能熔融,对于结晶型树脂,粘流温度等
[传感器]
小广播
最新电源管理文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved