基于UC3845的非隔离反激式输出可调开关电源设计

最新更新时间:2014-09-07来源: 互联网关键字:UC3845  非隔离  反激式 手机看文章 扫描二维码
随时随地手机看文章

  开关电源具有功耗小,效率高,稳压范围宽,体积小等优点,在通信设备、家用电器、仪器仪表等电子电路中应用广泛。本文设计的开关电源要求只有一组输出电压,输出电压调节范围在25~36 V之间,输出电压纹波不超过0.8 V,输出最大功率不低于70 W。在开关电源的各种典型结构中,反激式开关电源硬件电路简单,输出电压既可高于输入电压,又可低于输入电压,非常适合用于输出功率在200 W以下的开关电路。因此设计方案采用了非隔离式反激变换器构成开关电路,选用电流模式控制芯片UC3845为功率开关管提供驱动电流,实现宽幅稳压和高效转换的功能。

  1 非隔离反激式变换器电路原理

  反激式变换器有两种不同形式,非隔离反激式变换器(见图1)和隔离反激式变换器(见图2)。非隔离反激式变换器只有一个输出电压,适合于只有一组输出且不用隔离的电源,变换器只需要处理一个绕组电感。隔离反激式变换器可以在变压器次级有多个绕组,方便地输出多组与输入电压隔离的输出电压,并且可以通过调节变压器的变比得到大小不同的输出电压。但与非隔离反激式变换器相比,多个绕组的变压器磁芯元件将是电源设计中的一大关键。

  对于非隔离反激式变换器,输出电压和输入电压没有隔离,输出电压不低于输入电压。在一个开关周期内,开关导通时,电压加在电感上,电流以某斜率上升,并储存能量在电感中;当开关关断的时候,电感电流经过二极管放电。

  2 UC3845工作原理介绍

  UC3845是安森美半导体公司的高性能固定频率电流模式控制器。该控制器是专为离线和DC-DC变换器应用而设计的,它可以使设计者使用最少的外部元件即而获得高成本效益的解决方案。UC3845具有高达500 kHz的开关频率、大图腾柱输出电流等特性,是开关电源电路中驱动功率MOSFET管的理想器件。

  UC3845芯片具有双列直插8管脚塑料封装以及14管脚塑料表面贴封装两种形式,芯片内部电路具有振荡器、高增益误差放大器、电流取样比较器、PWM所存电路、5 V基准电路、欠压锁定电路和电流图腾柱输出电路等,如图3所示。

  (1)5 V基准电路。该部分电路由芯片工作电压欠压锁定提供,作为芯片内部电源,经分压衰减得到2.5 V作为误差放大器的比较基准;另外基准电路也提供5 V参考电压给第8(14)管脚。

  (2)振荡器。振荡器电路产生方波振荡,振荡频率最大为1 MHz,由管脚4(7)与管脚8(14)之间的RT以及管脚4(7)与GND之间连接的CT决定。计算公式推导如下:

  fosc=k/(RTCT) (1)

  UC3845在RT=10 kΩ,CT=3.3 nF时,振荡频率fosc=52 kHz。代入式(1),得到k=1.72。

  因此,UC3845芯片的振荡电路频率表达式可以表示如下:

  fosc=1.72/(RTCT) (2)

  (3)高增益误差放大器。UC3845内部提供一个可访问反相输入和输出的全补偿误差放大器。由电压反馈端2(3)管脚输入的反馈电压与2.5 V进行比较,产生的误差电压用于调节脉冲宽度。该误差电压经1管脚输出接RC网络,用于改变增益和频率特性进行外部回路补偿。

  (4)电流取样比较器。电感电流通过与输出开关Q1源极串联的参考取样电阻R转换成电压。此电压有电流取样输入管脚3(5)监视,并与来自误差放大器的输出电平进行比较。当取样电压大于1 V时,输出脉冲关闭,使开关管关断,起到过流保护的作用。为了抑制电流波形前的尖脉冲,通常在电流取样输入管脚与取样电阻之间增加RC滤波器消除尖脉冲引起的不稳定性。RC滤波器的时间常数接近尖脉冲的持续时间。典型应用电路如图5所示。

  (5)PWM锁存电路。UC3845的电流取样比较器和脉冲宽度锁存电路配置可确保在任何给定的振荡周期内,输出端仅有一个单脉冲输出。即输出端的每个控制脉冲不会超过一个振荡周期,也就是所谓的逐脉冲控制。

  (6)欠压锁定电路。UC3845采用两个欠压锁定比较器,以保证在输出级被驱动之前集成电路已经工作。正电源电压Vcc和参考输出电压Vref各自由分离的具有滞后特性的比较电路监视,防止工作在各自门限值时出现错误输出动作。Vcc比较器的上下门限分别为8.4 V和7.6 V;Vref比较器的上下门限为3.6 V和3.4 V。

  (7)输出电路。UC3845采用两个NPN型晶体管连接的图腾柱式输出电路。晶体管A的集电极接电源Vcc,发射极接晶体管B的集电极,晶体管B的集电极接地。两个晶体管的基极分别接前级控制,晶体管的连接处为输出端。A管导通则B管截止,输出高电平;B管导通A管截止,输出低电平;两管均截止时输出为高阻状态。

  3 开关电源设计

  3.1 开关电源系统组成

  图6所示开关电源电路可以很好地满足设计要求。储能元件L1、功率开关管Q1组成开关稳压器,UC3845构成开关的电流控制电路。220 V电网电压经过交流变压为18 V左右的交流信号U2,再经过桥式整流、滤波、稳压后,为UC3845提供工作电压。整流滤波后的直流电压正极经过L1接入开关管Q1的漏极。当Q1导通时,输入整流电压经L1,Q1漏源极、R7组成回路,输入整流电压全部加在L1两端,从而使电能转变为磁能储存于L1。当Q1截至时,L1产生的自感电势与输入整流电压串联连接,通过二极管D1向负载供电。Q1导通时间正比于L1存储能量,因此通过UC3845控制功率开关管通断占空比,可以使输出电压可控。

  UC3845在电流控制电路中的工作过程如下:整流后的直流电压经过LM7812稳压后,为UC3845提供工作电压。UC3845的6管脚经过一个小隔离电阻R4输出脉冲驱动功率开关管,功率开关管Q1导通,L1储能;脉冲消失则Q1截止,L1释放能量。管脚2的反馈电压值取自分压后的输出电压,反馈电压值Ufb=,该值的变化可以改变UC3845输出脉冲占空比,从而使输出电压稳定。调整Ufb即可完成输出电压在一定范围内的输出控制。Q1栅源极电流被R7取样后,经过R6和C12滤波,送入UC3845的电流取样端口。该取样信号作为开关管Q1的过流保护信号,当电路异常,导致开关管导通时间过长,使Q1源极电流增大,电流取样管脚的电压升高而控制UC3845驱动电流脉冲占空比变小。当管脚3的取样电压升高至1 V时,控制输出脉冲持续截至,从而达到保护功率开关管的目的。Rt和Ct决定了UC3845的振荡频率,而功率管的开关频率为芯片振荡频率的1/2。UC3845的误差放大器输出信号经R9和C11滤波电路后对反馈环路进行补偿。

  3.2 输出纹波电压控制措施

  图6所示开关电源电路给出了部分阻容元件参数,可以有效完成滤波以及降低输出纹波电压。桥式整流后的电流与地线之间以及输出端与地线之间分别连接1 μF以及4 700μF的电容,有效滤除高频噪声和低频干扰,降低输出纹波电压。UC3845的Vcc,Vref管脚和地线之间连接瓷介旁路电容(0.1 μF)的目的也是为了滤除高频噪声。

  3.3 开关电源输出可调控制系统

  图7给出开关电源在调试过程中通过CONTROL端连接的可调电阻VR1进行输出电压控制与测试。在实际应用中,连接图8所示的控制系统进行更精确的步进式电压控制以及电压检测与显示。

  图8为软件主程序流程图以及中断子程序流程图。主程序首先对中断寄存器、定时器、键盘、LCD、A/D、D/A控制口初始化,然后进入A/D循环采样,并使用LCD显示采样结果。中断子程序为8051的INT0外部中断处理程序,主要完成键盘扫描以及D/A输出控制电压。键盘输入要显示的开关电源电压与D/A变换器输出的控制电压之间的关系通过实验系统调整VR1进行测试得到相对应的关系。

  3.4 实验测试数据分析

  实验电路测试框图如图9所示示。将大功率滑线变阻器(100 W/1 kΩ)RL作为负载,串联万用表(DC/20 A)接入到输出端;输出电压可调范围为21~36.1 V,可通过键盘输入21~36 V,步进为1 V,则输出端可输出电压为相应的21~36 V;将大功率滑线变阻器(200 W/30 Ω)作为负载,串联万用表(DC/20 A)接入到输出端,将UC3845的2管脚跳线接到可调电阻端,调节可调电阻使输出电压最大;改变负载值,直到万用表显示电流达到2.2 A后一段时间,用手触摸开关稳压电源的各大功率器件,发热但是不烫手,则认为该电源正常工作状态下的输出电流可以达到2.2 A;减小负载组值,同时监测输出电压和输出电流,可以看到过流降压保护现象,动作电流为2.35 A。

  输出噪声纹波峰峰值:使用示波器(AC,200 ms/div)测量负载两端噪声,得到Uopp<0.45 V;图10为输出最大值时的纹波以及输出电压图(CH1:输出纹波,CH2:输出信号直流电压);在Io=2 A,Uo=33.4 V的测试条件下,将万用表(DC/20 A)串联到L1线圈前,测量得到Ii= 3.65 A,Ui=20.1 V,则DC—DC变换器的效率η=UoIo/(UiIi)=91%;UC3845第4管脚处测得信号振荡频率为170.8 kHz,与按照式(2)推导的理论值172 kHz非常接近。因此在式(2)中,k值取1.72比有些教材中取k=1.8更合适。信号波形见图11(CH1:振荡器信号,CH2:输出信号直流电压)。

  4 结语

  介绍的非隔离反激式变换器也称为升压变换器(Boost电路)。该开关电源经过实验测试,输出电压调节灵活,DC-DC转换效率高达91%,输出纹波电压小于0.45 V。论文给出了开关电源的详细电路图以及部分阻容元件参数,修正了振荡器频率参数,提供了电路的调测方法。该硬件电路简单,变换效率高,纹波控制有效的特点值得借鉴。

关键字:UC3845  非隔离  反激式 编辑:探路者 引用地址:基于UC3845的非隔离反激式输出可调开关电源设计

上一篇:小谈电源中逆变器的类型
下一篇:基于bq24161+TPS2419 双电池供电方案的设计分析

推荐阅读最新更新时间:2023-10-12 22:45

基于PT6913隔离高压LED驱动IC方案
驱动IC简介 PT6913芯片采用线性恒流控制输出电流,内部集成功率MOS,输出电流可通过外部电阻设定为10mA~60mA. PT6913最大输入电压可达400V,采用高端驱动方式,提供LED开路、LED短路保护。在任何情况下,输入电源高出LED负载的多余电压都由PT6913承受,LED负载不会面临过压威胁,这为整体方案提供了非常高的可靠性与稳定性。 为了防止IC过热损坏,PT6913集成温度补偿功能,当IC内部结温上升到130℃时,PT6913开始减小输出电流,当结温达到150℃时,输出电流将会减小至0.这可避免传统过温保护方式的闪烁问题。 工作原理 PT6913A/B采用线性恒流驱动技术,电路拓扑简单实用。LED负载,芯片与整
[电源管理]
基于PT6913<font color='red'>非</font><font color='red'>隔离</font>高压LED驱动IC方案
一款高效反激式开关电源的设计以及性能测试
由于传统开关电源存在对电网造成谐波污染以及工作效率低等问题,因此目前国内外各类开关电源研究机构正努力寻求运用各种高新技术改善电源性能。.其中,在开关电源设计中通过功率因数校正PFC(Power Factor Correction)技术降低电磁污染及利用同步整流技术提高效率的研发途径尤其受到重视。 本文设计并制作了一种高效低电磁污染的开关电源样机。测试结果表明,该电源具有优良的动态性能、较高的功率因数和工作效率,且控制简单,故具有一定的实际应用价值。 开关电源设计方案 开关电源的结构如图1所示,它主要由220V交流电压整流及滤波电路、功率因数校正电路、DC/DC变换器三大部分组成。 220
[测试测量]
一款高效<font color='red'>反激式</font>开关电源的设计以及性能测试
基于UCC28600准谐振反激式开关电源的方案
    本文提出了一种基于UCC28600控制器的准谐振反激式 开关电源 的设计方案,该方案分析了准谐振反激式开关电源的工作原理及实现方式,给出了电路及参数设计和选择过程,以及实际工作开关波形。实验证明,该方案中所设计的准谐振反激式开关电源具有输入电压范围宽、转换效率高、低EMI、工作稳定可靠的特点。准谐振技术降低了MOSFET的开关损耗,提高产品可靠性。     引言     准谐振转换是十分成熟的技术,广泛用于消费产品的电源设计中。新型的绿色电源系列控制器实现低至150mW的典型超低待机功耗。本文将阐述准谐振反激式转换器是如何提高电源效率以及如何用UCC28600设计准谐振电源。     常规的硬开关反激电路
[电源管理]
基于UCC28600准谐振<font color='red'>反激式</font>开关电源的方案
一步步优化反激式设计
反激是最知名的隔离式电源拓扑结构,因为它可以用一个低边开关晶体管和有限的外部元件数提供多个隔离输出。不过,反激式电源也存在一些特殊性,如果设计人员没有充分理解并对其进行分析,就可能限制它的整体表现。 针对这种拓扑结构的系列文章将以非常简单的数学方法揭去所有反激式电源设计的神秘面纱,指导设计人员完成一个良好优化的设计。 反激式转换器 根据应用的不同,直流-直流应用(DC/DC应用)可能需要多个输出,而且需要输出隔离。此外,输入与输出的隔离可能需要符合安全标准或提供阻抗匹配。 隔离式电源不仅可以防止用户接触到潜在的致命电压和电流,而且具有性能优势。利用中断接地回路,隔离式电源可以保持仪器精度,并可以在不牺牲总线益处的条件
[模拟电子]
一步步优化<font color='red'>反激式</font>设计
为什么在反激式转换器中使用BJT?
  在USB 适配器、手机充电器以及系统偏置电源等大量低功耗应用中,低成本准谐振/非连续模式反激式转换器是常见选择(图1)。这类转换器设计效率高,成本极低。因此为什么不考虑在自己的设计中使用双极性节点晶体管(BJT)呢?   这样做有两个非常有说服力的理由:一个是BJT的成本远远低于 FET;另一个是BJT的电压等级比 FET 高得多。这有助于设计人员降低钳位电路和/或缓冲器电路的电气应力与功耗。使用BJT的唯一问题是许多工程师已经习惯于 FET,或是在他们的电源转换器中从来不将BJT用作主开关(QA)。本文将探讨如何估算/计算在非连续/准谐振模式反激式转换器中使用的NPN BJT的损耗。        图1:离线高电压 BJT
[电源管理]
为什么在<font color='red'>反激式</font>转换器中使用BJT?
意法半导体发布集成先进功能的反激式控制器,提升 LED照明性能
意法半导体发布集成先进功能的反激式控制器,提升 LED照明性能 2023 年 2 月 21 日,中国—— 意法半导体的 HVLED101反激式控制器适用于最高180W的LED 灯具,集成各种功能、控制专利技术和初级检测稳压支持,有助于提高照明性能,简化灯具电路设计。 HVLED101 是意法半导体的 HVLED系列高功率因数控制器的新成员,集成的800V 启动电路可将 LED 点亮时间缩短至 250ms 以内。在市电电压波动时,高压输入检测电路和最大功率控制 (MPC)引擎确保功率输出稳定,让设计人员可以选择更小、成本更低的外部无源元件来处理恶劣的市电条件。无隔离反馈的初级检测稳压进一步减少了物料成本,并提高了驱动
[电源管理]
意法半导体发布集成先进功能的<font color='red'>反激式</font>控制器,提升 LED照明性能
单端反激式开关电源变压器设计的基本工作原理
反激式变压器的基本工作原理 图一(a)为 反激 式变压器的工作原理图,其中,开关管VT1的导通和截止使得原边绕组线圈产生交变电流信号。当原边绕组导通期间,次级绕组输出电压为上负下正,整流二极管VD1和VD2截止,输出电容Co和Cf放电;当原边绕组截止时次级输出电压为上正下负,整流二极管VD1和VD2导通,输出电容Co和Cf充电,与正激式电路充放电过程相反。可以从输入输出电压、电流波形关系图一(b)中得出DCM模式下的工作过程。其中PWM、UDS、IDl,IF1、Io1、Uo2分别为开关管VT1栅极脉宽调制信号、漏源极电压、整流二极管VD1和VD2电流、负载输出端Co正极性端电压波形、反馈输出端Cf正极性端电压波形。 图一:
[电源管理]
单端<font color='red'>反激式</font>开关电源变压器设计的基本工作原理
TOPSwitch-JX将适配器的空载功耗降至85mW
    Power Integrations公司宣布推出TOPSwitch-JX系列器件,新产品系列共由16款高度集成的功率转换IC组成,其内部均集成有一个725 V功率MOSFET,适用于设计反激式电源。新型TOPSwitch-JX器件采用多模式控制算法,可提高整个负载范围内的功率效率。由于在满功率下工作效率较高,因此可减少正常工作期间的功率消耗量,同时降低系统散热管理的复杂性及费用支出。在低输入功率水平下,高效率还可使适配器的空载功耗降至最低,增大待机模式下对系统的供电量,这一点特别适用于受到能效标准和规范约束的产品应用。     由于采用全新的多周期调制模式,使得电源在空载条件下具有出色的轻载效率和低功耗,既可降低
[电源管理]
小广播
最新电源管理文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved