电感在电路中的作用详解

最新更新时间:2014-09-08来源: 互联网关键字:电感  电路 手机看文章 扫描二维码
随时随地手机看文章

  尽管业内不少人都认为,模拟和数字技术很快将争夺电源调节器件控制电路的主导权,但实际情况是,在反馈回路控制方面,这两种技术看起来正愉快地共存着。

  的确,许多电源管理供应商都提供了不同的方案。一些数字控制最初的可编程优势现在甚至在采用模拟反馈回路的控制器和稳压器中也有了。当然,数字电源还是有一些吸引人之处。

  本文主要讨论脉冲宽度调制(PWM)、脉冲密度调制(PDM)和脉冲频率调制(PFM)开关稳压器和控制器IC。其中一些集成了控制实际开关的一个或多个晶体管的驱动器,另一些则没有。还有一些甚至集成了开关FET,如果它们提供合适的负荷的话。因此,数字还是模拟的问题取决于稳压器的控制回路如何闭合。

  图1显示了两种最常见的PWM开关拓朴布局的变化,降压和升压(buck/boost)转换器。在同步配置中,第二只晶体管将取代二极管。在某种意义上来讲,脉冲宽度调制的采用使得这些转换器“准数字化”,至少可与基于一个串联旁路元件的723型线性稳压器相比。事实上,PWM使得采用数字控制回路成为可能。不过,图1中的转换器缺少控制一个或几个开关占空比的电路,它可在模拟或数字域中实现。

                                

  不管采用模拟还是数字技术,都有两种方式实现反馈回路:电压模式和电流模式。简单起见,首先考虑它在模拟域中如何实现。

  图1: 没有控制器的开关模式DC-DC电源十分简单。不论用于升压还是降压,其成功与否取决于设计者如何安排一些基本的元器件。

  在电压模式拓朴中,参考电压减去输出电压样本就可得到一个与振荡器斜坡信号相比较的小误差信号(图2),当电路输出电压变化时,误差电压也产生变化,后者反过来改变比较器的门限值。反过来,这将使输出信号宽度发生变化。这些脉冲控制稳压器开关晶体管的导通时间。随着输出电压升高,脉冲宽度将变小。

                                         

  图2: 电压模式反馈(本例中在模拟域)包含一个控制回路。

  电流模式控制的一个优势在于其管理电感电流的能力。一个采用电流模式控制的稳压器具有一个嵌套在一个较慢的电压回路中的电流回路。该内回路感应开关晶体管的峰值电流,并通过一个脉冲一个脉冲地控制各晶体管的导通时间,使电流保持恒定。

  与此同时,外回路感应直流输出电压,并向内回路提供一个控制电压。在该电路中,电感电流的斜率生成一个与误差信号相比较的斜坡。当输出电压下跌时,控制器就向负载提供更大的电流(图3)。

                                       

 

            图3: 电流模式反馈采用了嵌套反馈回路。与电压模式不同,它需要计入电感上的电流。

  在这些控制拓朴中,在回路的相移达到360°的任意频率处,控制回路的增益不能超过1。相移包括了将控制信号馈入反馈运放的倒相输入端所产生的固有180°相移、放大器和其它有源元件的附加延迟、以及由电容和电感(特别是输出滤波器的大电容)引入的延迟。

  稳定回路要求对一定频率范围内的增益变化和相移进行补偿。传统上,采用模拟PWM来稳定电源通常需要采用经验方法:你在一块与生产型电路板相同布局的实际电路板上,实验各种无源器件的不同组合,并观察在电源电压和负载需求变化时的电路时间域响应。最近,事情已变得很简单。因为现在模拟控制器公司在其自己的型号产品上实现了首先在数字控制器上引入的各种“在寄存器中插入一个值”的功能。

  数字控制回路

  大多数电压模式控制的数字实现方案包括了模数转换器(ADC)、实现一些控制算法的微控制器或DSP、以及一个数字脉冲宽度调制器(DPWM),该DPWM拾取控制器输出并产生驱动执行开关动作的一个或几个晶体管所需的信号(图4)。

                                  

                      图4: 电压模式控制的数字实现消除了锯齿产生器。在其他方面,它们与模拟实现紧密对应。

  首先,ADC产生馈入控制器的一系列输出电压的数字表示。控制算法是人们所熟悉的比例积分(PI)或比例积分/差分(PID)算法。

  在一个PID控制器(更复杂的实例)中,每个ADC输入都要执行基于一系列系数的算法。比例系数是与灵敏度相关的增益因子。整数系数按照错误出现的时间长短来调节PWM的占空比。诱导系数补偿回路的时间延迟(相位更有效)。综合起来,PID算法的各个系数决定了系统的频率响应。

  控制器随后将ADC的输出电压表示转换成维持期望的输出电压所需的脉冲持续时间(占空比)信息。然后,该信息被传送至一个DPWM,它执行与模拟PWM一样的驱动信号产生功能。

  注意模拟和数字控制方案管理开关晶体管的不同。模拟控制器在时钟上升沿触发开关晶体管成ON状态,并在电压坡度达到预设的门槛电压时将晶体管触发成OFF状态;PID控制器则计算开关晶体管ON和OFF状态期间所需的持续时间。

  理论上,模拟控制可以提供连续精度的输出电压。但ADC精度和采样率的交互作用再加上DPWM开关速率,使事情变得有些复杂。

  例如,DPWM必须具有比ADC更高的精度。否则,ADC输出的1-LSB变化就可能导致DPWM使输出电压变化大于1-LSB。其结果是,输出电压就稳定地在两个数值之间转换,这个状态被称之为“限制性循环”。

  不过,避免循环也不是轻而易举的。这是因为要提供DPWM更高的精度就意味着必须提高其脉冲速率(脉冲速率决定了在任一给定时间段能够产生多少比特)。然而,DPWM脉冲速率限制了它对所有来自控制器的比特进行压缩的时间。Artesyn白皮书中的例子介绍了一个假设的具有1MHz开关速率和10位ADC的DPWM。计算显示,调制器要求超过1 GHz的脉冲速率。

  当然,如此的高速度是不切实际的,因此数字控制器的设计者必须找到另一种替代解决方案。一种方案是引入一些DPWM时钟抖动。稳压器输出过滤器对馈入的任一脉冲串进行平均,这使对每个mth输出脉冲的宽度进行相当于1 LSB的调整成为可能。

  这将脉冲串的平均值增加或降低了1 LSB精度的1/m倍。如果在控制器输入端的1-LSB使输出脉冲串平均变化10mV,这将使每四个脉冲缩短相应于10 mV的时间,那么通过滤波器的平均输出电压将降低 10mV/4或2.5mV。

  替代解决方法

  尽管几乎所有数字控制器采用ADC和程序存储控制器,但这并不是唯一可能的解决方案。去年,Zilker Labs注意到,达到最新Pentium级处理器所要求的阶跃响应(每毫微秒数百安),要求在控制器中采用相当快同时对功率消耗量大的DSP。

  作为一种较低功耗的替代方案,该公司推出了一款基于比较器(而不是ADC)和状态机(而不是程序存储解决方案)的控制器。

  此外,前述简单的降压型或升压型拓朴也不是实现数字稳压的唯一途径。Vicor提出了一种完全不同的解决方案,它基于比前述简单的降压型或升压型拓朴要复杂得多的稳压器拓朴,并重新分配了电源架构中的各个基本元素。

  最后,数字控制曾是一项突破性技术,但如今数字控制的诸多好处也已出现在模拟控制稳压器中。

  固有180°相移、放大器和其它有源元件的附加延迟、以及由电容和电感(特别是输出滤波器的大电容)引入的延迟。

  稳定回路要求对一定频率范围内的增益变化和相移进行补偿。传统上,采用模拟PWM来稳定电源通常需要采用经验方法:你在一块与生产型电路板相同布局的实际电路板上,实验各种无源器件的不同组合,并观察在电源电压和负载需求变化时的电路时间域响应。最近,事情已变得很简单。因为现在模拟控制器公司在其自己的型号产品上实现了首先在数字控制器上引入的各种“在寄存器中插入一个值”的功能。

关键字:电感  电路 编辑:探路者 引用地址:电感在电路中的作用详解

上一篇:关于高性能低成本的数字电源管理介绍
下一篇:设计开关电源的一些关键问题

推荐阅读最新更新时间:2023-10-12 22:45

4级智能可调光电子镇流器电路的实现
本文介绍采用美国微芯公司微控制器PIC12F629和美国IR公司 IRS2530D 的4级智能可调光电子镇流器电路的工作原理与实现。   1 关于IRS2530D和PIC12F629   1)IRS2530D简介   IRS2530D采用8引脚DIP或8引脚SOIC封装,IRS2530D的引脚图如图1所示,IRS2130D的外形封装图如图2所示,IRS2530D的内部功能框图如图3所示,IRS2530D的引脚功能如表1所示。      图1 IRS2530D的引脚图      图2 IRS2130D的外形封装图      图3
[模拟电子]
4级智能可调光电子镇流器<font color='red'>电路</font>的实现
浅谈MPPT中,DC-DC变换电路的工作原理
光伏扶贫、光伏阳光房、光伏大棚等诸多利民项目已深入居民生活,很多高大上的专业术语也早已为众人熟知。比如,购买一台逆变器时,多数人会问道:这台逆变器有几路MPPT?发电效率怎么样? 然而,很多人都知道MPPT的功能,却并不清楚其内部电路的工作原理。今天,小杰就为大家简单科普下,MPPT中重要的DC-DC变换电路。 MPPT(最大功率点追踪)作为光伏逆变器的重要功能,不仅能有效提高辐照利用率、最大限度提升光伏逆变器工作效率,还能通过对组件输出电压电流的变换,使组件功率伴随日照等因素适时调整。特别是在弱光条件下,MPPT可极大拓宽组件输入电压,从而实现逆变器的最大功率追踪。此处,我们不妨以最常用的BOOST变换电路为例,做下简单分析。
[新能源]
七种判奇电路实现方法的分析比较
  目前数字电子技术基础课程的实验内容包括验证性实验、综合性实验、设计性实验三部分,每一部分实验内容安排的侧重点不同。比如设计性实验的关键是设计,要求学生依据设计要求,设计合理的实验电路,并选择器件、安装调试完成实验内容。从教学实践来看,多数学生能够顺利完成实验要求,但解决问题的思路单一,设计过程灵活性差,不注意创新思维能力的锻炼。这就要求教师在合理安排实验内容的同时,不断通过各种途径,引导学生拓宽知识面,创新思维方式,对待同一问题,积极探索多种解决问题的路径。组合逻辑电路的设计多种多样,笔者选择一种奇偶校验电路实现进行详细阐述。   奇偶校验电路在组合逻辑电路的分析与设计中具有一定的典型性和实用性,熟悉判奇电路的逻辑功能及电
[电源管理]
七种判奇<font color='red'>电路</font>实现方法的分析比较
7种常见的51单片机时钟电路
在MCS-51单片机片内有一个高增益的反相放大器,反相放大器的输入端为XTAL1,输出端为XTAL2,由该放大器构成的振荡电路和时钟电路一起构成了单片机的时钟方式。根据硬件电路的不同,单片机的时钟连接方式可分为内部时钟方式和外部时钟方式,如下图所示。 时钟电路:(a)内部方式时钟电路,(b)外接时钟电路 在内部方式时钟电路中,必须在XTAL1和XTAL2引脚两端跨接石英晶体振荡器和两个微调电容构成振荡电路,通常C1和C2一般取30pF,晶振的频率取值在1.2MHz~12MHz之间。对于外接时钟电路,要求XTAL1接地,XTAL2脚接外部时钟,对于外部时钟信号并无特殊要求,只要保证一定的脉冲宽度,时钟频率低于12MHz即可
[单片机]
7种常见的51单片机时钟<font color='red'>电路</font>图
基于MAX2742型电路的GPS接收机设计
   1 引言   GPS卫星发送的导航定位信号是一种可供无数用户共享的信息资源。对于陆地、海洋和空间的广大用户,只要用户拥有能够接收、跟踪、变换和测量GPS信号的接收设备即GPS信号接收机,就可以在任何时候用GPS信号进行导航定位测量。GPS信号接收机的功能是能够捕获到按一定卫星高度截止角所选择的待测卫星的信号,并跟踪这些卫星的运行,对接收到的GPS信号进行变换、放大和处理、以便测量出GPS信号从卫星接收机天线的传播时间,解译GPS卫星所发送的导航电文,实时地计算出测站的3维位置甚至3维速度和时间。   典型GPS接收机的结构如图1所示。   1575.42MHz的GPS信号在进入下变频IC前,先经过低噪声放大器(LNA)和滤
[应用]
LED背光驱动模块电路设计
   电路分析: 背光驱动的要求是任何条件下背光LED的发光亮度不变,即需要构造一个恒流源电路。图所示的背光驱动电路是最简单的恒流源电路,电路工作时电阻R9两端电压等于VLL1加上BE极导通电压,是约为1.7V的固定电压,流过R9的电流也是固定电流,该电流约等于Q2的射极电流和集电极电流,所以流过背光二极管D1的电流也为一恒流,实现了背光LED的恒流驱动。背光LED的驱动电流为10mA左右,R9取值150Ω。
[电源管理]
LED背光驱动模块<font color='red'>电路</font>设计
湘江XJ-300高频电子捕鱼器原理及电路
工作原理: 本机采用自激振荡方式,晶体管BG1-4,BG5-8和T1,T2,D1和R1组成前级高频自激振荡器。T1次级输出高频高压脉冲经D1,D2,C1,C2组成的倍压整流电路转变为直流高压,输入到后级。后级采用可控硅输出电路,由电容C6,可控硅Q1,双向触发二极管D5和线圈T3共同组成一低频振荡电路,它将高压直流以低频脉冲方式释放输出,图中JP4接电位器可调节后级放电频率,JP5接高低压转换开关 调试: 用100W灯泡做负载进行调试可以直观观察工作情况。 前级调试将负载接在C2的正端和C1的负端,仔细检查电路确认接线正确后触通开关(图中未绘出)灯泡应亮的发白(只为调试,不要时间太长,因这时功率管的工作电流非常大以防烧毁
[模拟电子]
湘江XJ-300高频电子捕鱼器原理及<font color='red'>电路</font>
一种高速低压低静态功耗欠压锁定电路
在DC-DC电源管理芯片中,电压的稳定尤为重要,因此需要在芯片内部集成欠压锁定电路来提高电源的可靠性和安全性。对于其它的集成电路,为提高电路的可靠性和稳定性,欠压锁定电路同样十分重要。 传统的欠压锁定电路要求简单、实用,但忽略了欠压锁定电路的功耗,使系统在正常工作时,仍然有较大的静态功耗,这样就降低了电源的效率,并且无效的功耗增加了芯片散热系统的负担,影响系统的稳定性。 基于传统的欠压锁定电路,本文提出一种CMOS工艺下的低压低静态功耗欠压锁定电路,并通过HSPICE仿真。此电路可以在1.5V~6V的电源电压范围下工作,阈值可调,翻转速度很快。电源电压正常工作时,此电路的静态功耗可低于2μW。此电路结构简单,用标准CM
[模拟电子]
小广播
热门活动
换一批
更多
最新电源管理文章
更多精选电路图
换一换 更多 相关热搜器件
更多每日新闻
随便看看
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved