电流源设计中的运放振荡问题的解决方案

最新更新时间:2014-09-21来源: 互联网关键字:电流源设计  运放振荡 手机看文章 扫描二维码
随时随地手机看文章

对于工程师来说,电流源是个不可或缺的仪器,也有很多人想做一个合用的电流源,而应用开源套件,就只是用一整套的PCB,元件,程序等成套产品,参与者只需要将套件的东西焊接好,调试一下就可以了,这里面的技术含量能有多高,而我们能从中学到的技术又能有多少呢?本文只是从讲述原理出发,指导大家做个人人能掌控的电流源。本文主要就是设计到模拟部分的内容,而基本不涉及单片机,希望朋友能够从中学到点知识。

  加速补偿--校正Aopen

  校正Aopen是补偿的最佳方法,简单的Aopen补偿会起到1/F补偿难以达到的效果,但并非解决一切问题。

  如果振荡由于po位于0dB线之上造成,可想到的第一办法是去掉po.

  去掉极点作用的基本方法是引入零点。

  引入零点的最佳位置为Ro,Ro上并联电容Cs可为MOSFET输入端引入一个零点zo.

  但Ro是运放内部电阻,无法操作,因此在Ro后添加一只电阻Rs,并将Cs与Rs并联。

  如果Rs>Ro,则可基本忽略Ro的作用。

  增加Rs和Cs后,会使MOSFET输入端的极点po和零点zo频率分别为:

  po=1/2pi(Cs+Cgs)Rs,zo=1/2pICsRs.

  如果Cs>Cgs,则原有的极点po=1/2piRoCs由高频段移至低频段,频率由Cs、Cgs和Rs决定,而非Cgs和Ro决定,新引入的零点zo也在低频段并与po基本重合,两者频率差由Cgs与Cs的比例决定,因而很小。

  通常Rs=2k-5kOhm,Cs=0.01-0.1uF.

  Rs和Cs将原有极点po移至低频段并通过zo去除。像极了chopper运放里通过采样将1/f噪声量化到高频段后滤除。很多不沾边的方法思路都是相通的。

  由瞬态方法分析,Cs两端电压不可突变,因此运放输出电压的变化会迅速反应到栅极,即Cs使为Cgs充电的电流相位超前pi/2.因此Cs起到加速电容作用,其补偿称为加速补偿或超前补偿。

  很多类似电路里在Rs//Cs之后会串联一只小电阻,约100 Ohm,再稍适调整零点和极点位置,此处不必再加,那个忽略的Ro很合适。

  看个范例,Agilent36xx系列的MOSFET输入级处理,由于PNP内阻很小,至少比运放低得多,因此后面有一只R42=100 Ohm.

  在此之前,如果看到C49和R39,恐怕很多坛友会很难理解其作用,然而这也正是体现模拟电路设计水平之处。有人感叹36xx系列电路的复杂,然而内行看门道,其实真正吃功夫的地方恰在几只便宜的0805电阻和电容上,而非那些一眼即可看出的LM399、AD712之类的昂贵元件。

  后面两节里还会出现几只类似的元件,合计成本0.20元之内。

  本次增加成本:

  3.9k Ohm电阻 1只 单价0.01元,合计0.01元

  0.1uF/50V电容 1只 单价0.03元,合计0.03元

  合计0.04元

  合计成本:9.46元

  潜在的振荡:运放的高频主极点pH

  通过加速补偿,由Cgs造成的极点作用基本消除。

  然而,0dB线附近还有一个极点--运放的高频主极点pH.

  事实上,就纯粹的运放而言,pH只在0dB线之下不远的位置。与po类似,由于gmRsample的增益作用,pH也有可能浮出0dB线,从而使Aopen与1/F的交点斜率差为40dB/DEC,引起振荡。

  pH的位置比po低,因此gmRsample的增益必须更高才能使电路由于pH而产生振荡,然而gmRsample由于datasheet中没有完整参数,实际上只能大致预测而无法精确计算。因此必须采取一定措施避免pH的作用。

关键字:电流源设计  运放振荡 编辑:探路者 引用地址:电流源设计中的运放振荡问题的解决方案

上一篇:电源低功率设计——多低才算低?
下一篇:LED背光漏电流故障解决方案BoostPak

推荐阅读最新更新时间:2023-10-12 22:45

基于51单片机的多功能数控电流源设计
在现代科学研究和工业生产中,精度高、稳定性好的数控直流电流源得到了十分广泛的应用。以往所采用的电流源多数是利用电位器进行调节,输出电流值无法实现精准步进。有些电流源虽能够实现数控但是往往输出的电流值过小,且所设定的输出电流值是否准确不经测试无法确定,不够直观。为此,结合单片机技术及V/I变换电路,利用闭环反馈调整控制原理设计制作了一种新型的基于单片机控制的高精度数控直流电流源。 本系统以AT89S52单片机为控制器,通过人机接口(按键和LCD显示屏)来设置输出电流,设置步进等级1 mA,并可同时显示预设电流值和实际输出电流值。本系统由按键设置输出电流值,经单片机计算后通过D/A转换器(TLV5618)输出模拟信号,再经过V/
[单片机]
基于51单片机的多功能数控<font color='red'>电流源</font><font color='red'>设计</font>
采用LPC938的高精度数控直流电流源的方案设计
总体方案选择与设计 方案论证与比较 ① 主电路及调整方式的选择 方案一 开关稳压调整 开关稳压调整方式效率高,普遍应用于计算机等现代数字仪器中,但一般纹波较大,难以控制,很有可能造成设计的失败和技术参数的超标。 方案二 串联反馈调整 该方案采用负反馈网络,从输出电压取样与基准电压比较,并将误差经放大器放大后反馈至调整管,使输出电压在电网电压变动的情况下仍能保持稳定。该电路输出电压稳定性好,负载调整率高,引入的负反馈使纹波电压大大减小,且电路简单、容易调试。但其属于线性稳压源,即调整管工作在放大区,因而功耗比较大。 方案三 综合以上两种方案 结合开关稳压调整与串联反馈调整的优点,在串联反馈调整的基础上增加一级预稳压,构成
[单片机]
采用LPC938的高精度数控直流<font color='red'>电流源</font>的方案<font color='red'>设计</font>
一种基于STM32的高精度程控电流源设计
简介:为应对市场需求;本文设计了输出电流为0~5A;最大功率为100W的高精度程控电流源;主要技术指标为:电流源工作电压220V/50Hz;输出电流范围0~5A连续可调; 低纹波、高精度电流源是一种重要的仪器设备;广泛应用于电光源、电化学、通信、测量技术、电子仪器等领域。目前,市场上的电流源不具备连续可调功能;并且输出电流范围小、精度低、纹波大、价格昂贵;为应对市场需求;本文设计了输出电流为0~5A;最大功率为100W的高精度程控电流源;主要技术指标为:电流源工作电压220V/50Hz;输出电流范围0~5A连续可调;线路调整率《0。05%+0。1MA;负载调整率《0。05%+1MA;设准确度≪0。05%+2MA;回读准确度《0
[单片机]
一种基于STM32的高精度程控<font color='red'>电流源</font><font color='red'>设计</font>
基于单片机的高精度数字直流电流源设计
1 引言 直流电流源是一种应用广泛的电子仪器,对于要求输出电流可调的情况,最简单实用的方法是通过软件控制来实现。使用单片机作为主控部件,系统设计简单方便。本文设计的直流电流源是以凌阳61单片机系统 为核心,采用12位外部扩展MAX531DA和MAX197AD芯片,并在外部电流输出模块中引入PI控制 ,构成电流闭环,有效消除了由于电子器件本身以及外界干扰造成的输出误差,大大提高了电流源的精度。 图1 系统结构图 2 系统原理与设计方案 系统主电路采用全桥整流电路作为负载电路电源,并选用大功率三极管 串联电路进行电流输出。控制电路使用凌阳61单片机,单片机扫描键盘显示接口,当有键按下时,键值通过83编码器CD4532读给单片机。单片机
[单片机]
基于单片机的高精度数字直流<font color='red'>电流源</font><font color='red'>设计</font>
数控直流电流源设计与实现
在电子设备中经常用到稳定性好、精度高、输出可预置的直流电流源。本文设计的数控直流电流源能够很好地降低因元器件老化、温漂等原因造成的输出误差,输出电流在20mA~2000mA可调,输出电流可预置、具有“+”、“-”步进调整、输出电流信号可直接显示和语音提示等功能。硬件电路采用凌阳单片机SPCE061A为控制核心,利用闭环控制原理,加上反馈电路,使整个电路构成一个闭环,在软件方面主要利用PID算法来实现对输出电流的精确控制。该系统可靠性高、体积小、操作简单方便、人机界面友好。 图1 数控直流电流源的基本模块方框图 系统硬件实现方案 本设计采用单片机作为主要控制部件,通过键盘预置输出电流值并采用液晶模块实时显示。整个系统硬件部
[电源管理]
运放振荡器电路图
单运放振荡器电路图
[模拟电子]
单<font color='red'>运放</font><font color='red'>振荡</font>器电路图
基于双12位DAC的高精度直流电压/电流源设计
引言 在仪表校准中,希望直流电压源或电流源的精度与分辨率足够高,因为这是仪表能否校准好的关键所在。然而,单纯使用单个DAC的方法不仅成本高,而且各项性能并不能得到保证,因此,本文提出了一种使用一个双通道DAC来实现高精度直流电压/电流源的方法,即一个通道实现高精度要求,另一个通道实现动态范围要求。这样不仅节约了成本,精度也达到了要求。 系统设计实现 设计的思路是先产生一个分辨率为0.02mV、动态范围为0~2.5V的标准电压信号Vstand,然后通过放大电路将该基本电压放大5倍,就可以得到0~12.5V、分辨率为0.1mV的直流电压,从而实现高精度的电压源。而动态范围为0~20mA、分辨率为0.001mA的高精度电流源则
[应用]
基于LPC938的高精度数控直流电流源设计
总体方案选择与设计 1方案论证与比较 ① 主电路及调整方式的选择 方案一 开关稳压调整     开关稳压调整方式效率高,普遍应用于计算机等现代数字仪器中,但一般纹波较大,难以控制,很有可能造成设计的失败和技术参数的超标。 方案二 串联反馈调整     该方案采用负反馈网络,从输出电压取样与基准电压比较,并将误差经放大器放大后反馈至调整管,使输出电压在电网电压变动的情况下仍能保持稳定。该电路输出电压稳定性好,负载调整率高,引入的负反馈使纹波电压大大减小,且电路简单、容易调试。但其属于线性稳压源,即调整管工作在放大区,因而功耗比较大。 方案三 综合以上两种方案     结合开关稳压调整与串联反馈调整的优
[电源管理]
小广播
最新电源管理文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved